This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337471 #16 Dec 08 2022 07:36:47 %S A337471 1,3,15,9,105,45,1155,27,225,315,15015,135,255255,3465,1575,81, %T A337471 4849845,675,111546435,945,17325,45045,3234846615,405,11025,765765, %U A337471 3375,10395,100280245065,4725,3710369067405,243,225225,14549535,121275,2025,152125131763605,334639305,3828825,2835,6541380665835015,51975,307444891294245705,135135 %N A337471 Primorial inflation of n prime shifted once: a(n) = A003961(A108951(n)). %H A337471 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>. %H A337471 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>. %F A337471 a(n) = A003961(A108951(n)). %F A337471 a(n) = A000265(A108951(A003961(n))). %F A337471 Completely multiplicative with a(prime(i)) = A003961(A002110(i)) = A070826(1+i). - _Antti Karttunen_, Nov 17 2020 %F A337471 Sum_{n>=1} 1/a(n) = 1 / Product_{k>=2} (1 - 1/A070826(k)) = 1.6241170949... . - _Amiram Eldar_, Dec 08 2022 %o A337471 (PARI) %o A337471 A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); %o A337471 A034386(n) = prod(i=1, primepi(n), prime(i)); %o A337471 A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951 %o A337471 A337471(n) = A003961(A108951(n)); %Y A337471 Row 1 of A337470. %Y A337471 Cf. A000265, A002110, A003961, A034386, A070826, A108951. %K A337471 nonn,mult %O A337471 1,2 %A A337471 _Antti Karttunen_, Aug 28 2020