This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337481 #11 Sep 17 2020 20:32:27 %S A337481 0,0,1,1,5,11,25,55,117,241,493,1001,2019,4061,8149,16331,32705,65461, %T A337481 130981,262037,524161,1048425,2096975,4194097,8388365,16776933, %U A337481 33554103,67108481,134217285,268434945,536870321,1073741145,2147482869,4294966401,8589933569 %N A337481 Number of compositions of n that are neither strictly increasing nor strictly decreasing. %C A337481 A composition of n is a finite sequence of positive integers summing to n. %F A337481 a(n) = 2^(n-1) - 2*A000009(n) + 1, n > 0. %e A337481 The a(2) = 1 through a(5) = 11 compositions: %e A337481 (11) (111) (22) (113) %e A337481 (112) (122) %e A337481 (121) (131) %e A337481 (211) (212) %e A337481 (1111) (221) %e A337481 (311) %e A337481 (1112) %e A337481 (1121) %e A337481 (1211) %e A337481 (2111) %e A337481 (11111) %t A337481 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!Less@@#&&!Greater@@#&]],{n,0,15}] %Y A337481 Ranked by the complement of the intersection of A333255 and A333256. %Y A337481 A332834 is the weak version. %Y A337481 A337482 is the semi-strict version. %Y A337481 A337484 counts only compositions of length 3. %Y A337481 A007318 and A097805 count compositions by length. %Y A337481 A032020 counts strict compositions, ranked by A233564. %Y A337481 A218004 counts strictly increasing or weakly decreasing compositions. %Y A337481 Cf. A216652, A329398, A337462, A337483, A337605. %K A337481 nonn %O A337481 0,5 %A A337481 _Gus Wiseman_, Sep 11 2020