This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337483 #15 Apr 05 2023 16:39:47 %S A337483 0,0,0,1,2,4,5,8,10,13,16,20,23,28,32,37,42,48,53,60,66,73,80,88,95, %T A337483 104,112,121,130,140,149,160,170,181,192,204,215,228,240,253,266,280, %U A337483 293,308,322,337,352,368,383,400,416,433,450,468,485,504,522,541,560 %N A337483 Number of ordered triples of positive integers summing to n that are either weakly increasing or weakly decreasing. %H A337483 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,-1,-1,1). %F A337483 a(n > 0) = 2*A001399(n - 3) - A079978(n). %F A337483 From _Colin Barker_, Sep 08 2020: (Start) %F A337483 G.f.: x^3*(1 + x + x^2 - x^3) / ((1 - x)^3*(1 + x)*(1 + x + x^2)). %F A337483 a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) for n>6. (End) %F A337483 E.g.f.: (36 - 9*exp(-x) + exp(x)*(6*x^2 + 6*x - 19) - 8*exp(-x/2)*cos(sqrt(3)*x/2))/36. - _Stefano Spezia_, Apr 05 2023 %e A337483 The a(3) = 1 through a(8) = 10 triples: %e A337483 (1,1,1) (1,1,2) (1,1,3) (1,1,4) (1,1,5) (1,1,6) %e A337483 (2,1,1) (1,2,2) (1,2,3) (1,2,4) (1,2,5) %e A337483 (2,2,1) (2,2,2) (1,3,3) (1,3,4) %e A337483 (3,1,1) (3,2,1) (2,2,3) (2,2,4) %e A337483 (4,1,1) (3,2,2) (2,3,3) %e A337483 (3,3,1) (3,3,2) %e A337483 (4,2,1) (4,2,2) %e A337483 (5,1,1) (4,3,1) %e A337483 (5,2,1) %e A337483 (6,1,1) %t A337483 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],LessEqual@@#||GreaterEqual@@#&]],{n,0,30}] %Y A337483 A001399(n - 3) = A069905(n) = A211540(n + 2) counts the unordered case. %Y A337483 2*A001399(n - 6) = 2*A069905(n - 3) = 2*A211540(n - 1) counts the strict case. %Y A337483 A001399(n - 6) = A069905(n - 3) = A211540(n - 1) counts the strict unordered case. %Y A337483 A329398 counts these compositions of any length. %Y A337483 A218004 counts strictly increasing or weakly decreasing compositions. %Y A337483 A337484 counts neither strictly increasing nor strictly decreasing compositions. %Y A337483 Cf. A000212, A000217, A001840, A014311, A156040, A337461, A337603, A337604. %K A337483 nonn,easy %O A337483 0,5 %A A337483 _Gus Wiseman_, Sep 07 2020