This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337485 #15 Feb 14 2021 02:56:55 %S A337485 0,0,0,0,0,1,0,2,1,2,2,4,3,5,4,4,7,8,9,10,10,9,13,17,18,17,19,19,24, %T A337485 29,34,33,31,31,42,42,56,55,50,54,66,77,86,86,79,81,96,124,127,126, %U A337485 127,126,145,181,190,184,183,192,212,262,289,278,257,270,311 %N A337485 Number of pairwise coprime integer partitions of n with no 1's, where a singleton is not considered coprime unless it is (1). %C A337485 Such a partition is necessarily strict. %C A337485 The Heinz numbers of these partitions are the intersection of A005408 (no 1's), A005117 (strict), and A302696 (coprime). %H A337485 Fausto A. C. Cariboni, <a href="/A337485/b337485.txt">Table of n, a(n) for n = 0..750</a> %F A337485 a(n) = A007359(n) - 1 for n > 1. %e A337485 The a(n) partitions for n = 5, 7, 12, 13, 16, 17, 18, 19 (A..H = 10..17): %e A337485 (3,2) (4,3) (7,5) (7,6) (9,7) (9,8) (B,7) (A,9) %e A337485 (5,2) (5,4,3) (8,5) (B,5) (A,7) (D,5) (B,8) %e A337485 (7,3,2) (9,4) (D,3) (B,6) (7,6,5) (C,7) %e A337485 (A,3) (7,5,4) (C,5) (8,7,3) (D,6) %e A337485 (B,2) (8,5,3) (D,4) (9,5,4) (E,5) %e A337485 (9,5,2) (E,3) (9,7,2) (F,4) %e A337485 (B,3,2) (F,2) (B,4,3) (G,3) %e A337485 (7,5,3,2) (B,5,2) (H,2) %e A337485 (D,3,2) (B,5,3) %e A337485 (7,5,4,3) %t A337485 Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&CoprimeQ@@#&]],{n,0,30}] %Y A337485 A005408 intersected with A302696 ranks these partitions. %Y A337485 A007359 considers all singletons to be coprime. %Y A337485 A327516 allows 1's, with non-strict version A305713. %Y A337485 A337452 is the relatively prime instead of pairwise coprime version, with non-strict version A302698. %Y A337485 A337563 is the restriction to partitions of length 3. %Y A337485 A002865 counts partitions with no 1's. %Y A337485 A078374 counts relatively prime strict partitions. %Y A337485 A200976 and A328673 count pairwise non-coprime partitions. %Y A337485 Cf. A101268, A220377, A302696, A304709, A332004, A337450, A337451, A337462, A337561, A337605. %K A337485 nonn %O A337485 0,8 %A A337485 _Gus Wiseman_, Sep 21 2020