A337486 Numbers k such that b(k+1) divides b(k), where b() is Recamán's multiplicative sequence A008336.
1, 6, 10, 12, 14, 18, 20, 22, 26, 28, 30, 34, 36, 38, 42, 44, 45, 46, 50, 52, 54, 58, 60, 66, 68, 70, 72, 78, 82, 84, 86, 90, 92, 93, 94, 95, 98, 99, 100, 104, 106, 110, 111, 114, 116, 118, 119, 122, 124, 126, 130, 132, 134, 135, 136, 142, 146, 147, 148, 150, 154, 156, 158, 161, 162, 164, 165, 166
Offset: 1
Keywords
Examples
a(2) = 6. As there are no primes initially in the set 2,3,4,5 cannot be created and instead these numbers add three 2's, one 3 and one 5 to the set. As there is now one 2 and one 3 the number 6 = 2*3 can be created. After 6 is created the set of primes now contains 2,2,5. a(3) = 10. After 7,8,9, none of which can be created from the prime set, the prime set contains 2,2,2,2,2,3,3,5,7. As 2 and 5 are present 10 = 2*5 can be created, after which the set contains 2,2,2,2,3,3,7.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Block[{nn = 166, k = 1}, Reap[Do[If[Mod[k, i] == 0, k /= i; Sow[i], k *= i], {i, nn}]][[-1, 1]]] (* Michael De Vlieger, Sep 12 2020 *)
-
Python
from itertools import count, islice def A337486_gen(): # generator of terms c = 1 for n in count(1): a, b = divmod(c,n) if not b: c = a yield n else: c *= n A337486_list = list(islice(A337486_gen(),30)) # Chai Wah Wu, Apr 11 2024
Comments