This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337504 #16 Feb 02 2021 18:26:01 %S A337504 1,1,3,8,13,33,112,286,769,2288,6695,18745,54654,160888,467402, %T A337504 1362378,4016517,11807966,34708018,102451390,302870005,895207191, %U A337504 2650590597,7859253320,23316653154,69231883374,205773157904,612021943421,1821435719846,5424528040529,16165017705176 %N A337504 Number of compositions of 2*n with n maximal anti-runs. %C A337504 An anti-run is a sequence with no adjacent equal parts. %H A337504 Andrew Howroyd, <a href="/A337504/b337504.txt">Table of n, a(n) for n = 0..200</a> %F A337504 a(n) = [x^(2*n)*y^n] 1 - y + y*(y-1)/(y - 1 - Sum_{d>=1} (y-1)^d*x^d/(1 - x^d)). - _Andrew Howroyd_, Feb 02 2021 %e A337504 The a(0) = 1 through a(4) = 13 compositions: %e A337504 () (2) (2,2) (2,2,2) (2,2,2,2) %e A337504 (1,1,2) (1,1,1,3) (1,1,1,1,4) %e A337504 (2,1,1) (1,1,2,2) (1,1,2,2,2) %e A337504 (2,2,1,1) (2,2,2,1,1) %e A337504 (3,1,1,1) (4,1,1,1,1) %e A337504 (1,1,1,2,1) (1,1,1,1,3,1) %e A337504 (1,1,2,1,1) (1,1,1,2,2,1) %e A337504 (1,2,1,1,1) (1,1,1,3,1,1) %e A337504 (1,1,2,2,1,1) %e A337504 (1,1,3,1,1,1) %e A337504 (1,2,2,1,1,1) %e A337504 (1,3,1,1,1,1) %e A337504 (2,1,1,1,1,2) %t A337504 Table[Length[Select[Join@@Permutations/@IntegerPartitions[2*n],Length[Split[#,UnsameQ]]==n&]],{n,0,10}] %o A337504 (PARI) a(n)={polcoef(polcoef(1 - y + y*(y-1)/(y - 1 - sum(d=1, 2*n, (y-1)^d*x^d/(1 - x^d) + O(x^(2*n+1)))), 2*n, x), n, y)} \\ _Andrew Howroyd_, Feb 02 2021 %Y A337504 A106356 has this as main diagonal n = 2*k. %Y A337504 A336108 is the version for runs. %Y A337504 A337505 is the version for patterns. %Y A337504 A337564 is the version for runs in patterns. %Y A337504 A003242 counts anti-run compositions. %Y A337504 A011782 counts compositions. %Y A337504 A124767 counts runs in standard compositions. %Y A337504 A238343 counts compositions by descents. %Y A337504 A333213 counts compositions by weak ascents. %Y A337504 A333381 counts anti-runs in standard compositions. %Y A337504 A333382 counts adjacent unequal pairs in standard compositions. %Y A337504 A333489 ranks anti-runs. %Y A337504 A333755 counts compositions by number of runs. %Y A337504 A333769 gives run-lengths in standard compositions. %Y A337504 A337565 gives anti-run lengths in standard compositions. %Y A337504 Cf. A106351, A124762, A233564, A235998, A238130, A238279, A333214, A333216. %K A337504 nonn %O A337504 0,3 %A A337504 _Gus Wiseman_, Sep 04 2020 %E A337504 Terms a(11) and beyond from _Andrew Howroyd_, Feb 02 2021