This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337506 #13 Dec 31 2020 19:24:13 %S A337506 1,0,1,0,2,1,0,8,4,1,0,44,24,6,1,0,308,176,48,8,1,0,2612,1540,440,80, %T A337506 10,1,0,25988,15672,4620,880,120,12,1,0,296564,181916,54852,10780, %U A337506 1540,168,14,1,0,3816548,2372512,727664,146272,21560,2464,224,16,1 %N A337506 Triangle read by rows where T(n,k) is the number of length-n sequences covering an initial interval of positive integers with k maximal anti-runs. %C A337506 An anti-run is a sequence with no adjacent equal parts. The number of maximal anti-runs is one more than the number of adjacent equal parts. %H A337506 Andrew Howroyd, <a href="/A337506/b337506.txt">Table of n, a(n) for n = 0..1325</a> %F A337506 T(n,k) = A005649(n-k) * binomial(n-1,k-1) for k > 0. - _Andrew Howroyd_, Dec 31 2020 %e A337506 Triangle begins: %e A337506 1 %e A337506 0 1 %e A337506 0 2 1 %e A337506 0 8 4 1 %e A337506 0 44 24 6 1 %e A337506 0 308 176 48 8 1 %e A337506 0 2612 1540 440 80 10 1 %e A337506 0 25988 15672 4620 880 120 12 1 %e A337506 0 296564 181916 54852 10780 1540 168 14 1 %e A337506 Row n = 3 counts the following sequences (empty column indicated by dot): %e A337506 . (1,2,1) (1,1,2) (1,1,1) %e A337506 (1,2,3) (1,2,2) %e A337506 (1,3,2) (2,1,1) %e A337506 (2,1,2) (2,2,1) %e A337506 (2,1,3) %e A337506 (2,3,1) %e A337506 (3,1,2) %e A337506 (3,2,1) %t A337506 allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; %t A337506 Table[Length[Select[Join@@Permutations/@allnorm[n],Length[Split[#,UnsameQ]]==k&]],{n,0,5},{k,0,n}] %o A337506 (PARI) \\ here b(n) is A005649. %o A337506 b(n) = {sum(k=0, n, stirling(n,k,2)*(k + 1)!)} %o A337506 T(n,k)=if(n==0, k==0, b(n-k)*binomial(n-1,k-1)) \\ _Andrew Howroyd_, Dec 31 2020 %Y A337506 A000670 gives row sums. %Y A337506 A005649 gives column k = 1. %Y A337506 A337507 gives column k = 2. %Y A337506 A337505 gives the diagonal n = 2*k. %Y A337506 A106356 is the version for compositions. %Y A337506 A238130/A238279/A333755 is the version for runs in compositions. %Y A337506 A335461 has the reversed rows (except zeros). %Y A337506 A003242 counts anti-run compositions. %Y A337506 A124762 counts adjacent equal terms in standard compositions. %Y A337506 A124767 counts maximal runs in standard compositions. %Y A337506 A333381 counts maximal anti-runs in standard compositions. %Y A337506 A333382 counts adjacent unequal terms in standard compositions. %Y A337506 A333489 ranks anti-run compositions. %Y A337506 A333769 gives maximal run-lengths in standard compositions. %Y A337506 A337565 gives maximal anti-run lengths in standard compositions. %Y A337506 Cf. A019472, A052841, A060223, A106351, A269134, A325535, A337564. %K A337506 nonn,tabl %O A337506 0,5 %A A337506 _Gus Wiseman_, Sep 06 2020 %E A337506 Terms a(45) and beyond from _Andrew Howroyd_, Dec 31 2020