This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337507 #10 Sep 17 2020 20:35:06 %S A337507 0,0,1,4,24,176,1540,15672,181916,2372512,34348932,546674120, %T A337507 9486840748,178285201008,3607174453844,78177409231768, %U A337507 1806934004612220,44367502983673664,1153334584544496676,31643148872573831016 %N A337507 Number of length-n sequences covering an initial interval of positive integers with exactly two maximal anti-runs, or with one pair of adjacent equal parts. %C A337507 An anti-run is a sequence with no adjacent equal parts. For example, the maximal anti-runs in (3,1,1,2,2,2,1) are ((3,1),(1,2),(2),(2,1)). In general, there is one more maximal anti-run than the number of pairs of adjacent equal parts. %F A337507 a(n > 0) = (n - 1)*A005649(n - 2). %e A337507 The a(4) = 24 sequences: %e A337507 (2,1,2,2) (2,1,3,3) (3,1,2,2) %e A337507 (2,2,1,2) (2,3,3,1) (3,2,2,1) %e A337507 (1,2,2,1) (3,3,1,2) (1,1,2,3) %e A337507 (2,1,1,2) (3,3,2,1) (1,1,3,2) %e A337507 (1,1,2,1) (1,2,2,3) (2,1,1,3) %e A337507 (1,2,1,1) (1,3,2,2) (2,3,1,1) %e A337507 (1,2,3,3) (2,2,1,3) (3,1,1,2) %e A337507 (1,3,3,2) (2,2,3,1) (3,2,1,1) %t A337507 kv=2; %t A337507 allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; %t A337507 Table[Length[Select[Join@@Permutations/@allnorm[n],Length[Split[#,UnsameQ]]==kv&]],{n,0,6}] %Y A337507 A002133 is the version for runs in partitions. %Y A337507 A106357 is the version for compositions. %Y A337507 A337506 has this as column k = 2. %Y A337507 A000670 counts patterns. %Y A337507 A005649 counts anti-run patterns. %Y A337507 A003242 counts anti-run compositions. %Y A337507 A106356 counts compositions by number of maximal anti-runs. %Y A337507 A124762 counts adjacent equal terms in standard compositions. %Y A337507 A124767 counts maximal runs in standard compositions. %Y A337507 A238130/A238279/A333755 count maximal runs in compositions. %Y A337507 A333381 counts maximal anti-runs in standard compositions. %Y A337507 A333382 counts adjacent unequal terms in standard compositions. %Y A337507 A333489 ranks anti-run compositions. %Y A337507 A333769 gives maximal run lengths in standard compositions. %Y A337507 A337565 gives maximal anti-run lengths in standard compositions. %Y A337507 Cf. A019472, A052841, A060223, A106351, A269134, A335461, A337505, A337564. %K A337507 nonn %O A337507 0,4 %A A337507 _Gus Wiseman_, Sep 06 2020