This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337508 #19 Aug 09 2023 16:18:42 %S A337508 11,19,41,61,89,101,109,131,139,149,151,179,181,191,199,401,409,419, %T A337508 421,431,439,449,461,479,491,499,601,619,631,641,659,661,691,809,811, %U A337508 821,829,839,859,881,911,919,929,941,971,991,1009,1021,1033,1039,1049,1051 %N A337508 Primes such that neither the left half nor the right half of the prime is prime. %C A337508 For n > 9, the center digit is not considered when making the calculation. For a prime number to be in this sequence, both the substring to the left of the center and the substring to the right of the center must be nonprime. %C A337508 If a number appears in this sequence, it will not appear in A125523, A125524, or A125525. %C A337508 A000040 is the union of this sequence, A125523, A125524, and A125525. %H A337508 Harvey P. Dale, <a href="/A337508/b337508.txt">Table of n, a(n) for n = 1..1000</a> %e A337508 479 is prime. The left part of (4)79 is not prime. The right part of 47(9) is not prime. %p A337508 q:= n-> isprime(n) and (s-> (h-> not ormap(x-> isprime(parse(x)), %p A337508 [s[1..h], s[-h..-1]]))(iquo(length(s), 2)))(""||n): %p A337508 select(q, [$11..2000])[]; # _Alois P. Heinz_, Sep 14 2020 %t A337508 lhrhQ[p_]:=Module[{idp=IntegerDigits[p],c},c=Floor[Length[idp]/2];AllTrue[ {FromDigits[ Take[idp,c]],FromDigits[Take[idp,-c]]},!PrimeQ[#]&]]; Select[Prime[Range[5,200]],lhrhQ] (* _Harvey P. Dale_, Aug 09 2023 *) %o A337508 (PARI) lista(nn) = forprime(p=11, nn, my(l=#Str(p), e=floor(l/2), left=floor(p/10^(e+l%2)), right=p-floor(p/10^e)*10^e); if(!isprime(left) && !isprime(right), print1(p, ", "))) %o A337508 (Python) %o A337508 from sympy import nextprime, isprime %o A337508 A337508_list, p = [], 11 %o A337508 while p < 10**6: %o A337508 s = str(p) %o A337508 l = len(s)//2 %o A337508 if not (isprime(int(s[:l])) or isprime(int(s[-l:]))): %o A337508 A337508_list.append(p) %o A337508 p = nextprime(p) # _Chai Wah Wu_, Sep 14 2020 %Y A337508 Cf. A000040, A125523, A125524, A125525. %K A337508 nonn,easy,base %O A337508 1,1 %A A337508 _Iain Fox_, Aug 30 2020