This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337510 #28 Jan 16 2025 20:35:58 %S A337510 1,2,6,52,3854,21090612,629815387162156, %T A337510 561871511512925116799625359336, %U A337510 446575758106416254441837050759254156476271759098752411181598 %N A337510 a(n) = Sum_{k=0..n} T(n,k) where T(n,k) = (T(n-1, k-1) + T(n-1,k))^2. %C A337510 Based on Pascal's triangle A007318 by additionally squaring the sum of each term generated. For example, in Pascal, n=3 gives 1,2,1. Here n=3 gives, 1^2, (1+1)^2, 1^2 = 1+4+1. %F A337510 a(n) = Sum_{k=0..n} T(n,k) where T(n,k) = (T(n-1,k-1) + T(n-1,k))^2; T(0,0)=1; T(n,-1):=0; T(n,k):=0, n < k. %e A337510 1 = 1 %e A337510 1 + 1 = 2 %e A337510 1 + (1 + 1)^2 + 1 = 1 + 4 + 1 = 6 %e A337510 1 + (1 + 4)^2 + (4 + 1)^2 + 1 = 1 + 25 + 25 + 1 = 52 %e A337510 1 + (1 + 25)^2 + (25 + 25)^2 + (25 + 1)^2 + 1 = 1 + 676 + 2500 + 676 + 1 = 3854. %o A337510 (Python) %o A337510 def r(i): %o A337510 t = [[0, 1, 0], [0, 1, 1, 0]] %o A337510 for n in range(2, i+1): %o A337510 t.append([0]) %o A337510 for k in range(1, n+2): %o A337510 t[n].append((t[n-1][k-1] + t[n-1][k])**2) %o A337510 t[n].append(0) %o A337510 return(sum(t[i])) %Y A337510 Cf. A004019, A327563, A007318. %K A337510 easy,nonn %O A337510 0,2 %A A337510 _Glen Gilchrist_, Aug 30 2020