This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337514 #4 Aug 30 2020 07:12:46 %S A337514 1,-1,0,1,0,-2,1,-1,13,-16,-39,76,122,-365,-64,537,1103,-1565,-6850, %T A337514 6630,38704,-58273,-108054,204722,366920,-598506,-1526994,1111475, %U A337514 9656314,-7254090,-43224847,39704799,171028427,-177129071,-604754108 %N A337514 G.f. A(x) satisfies: A(x) = 1 - Sum_{k=1..5} (x * A(x))^k. %F A337514 G.f.: A(x) = (1/x) * Series_Reversion(x / (1 - x - x^2 - x^3 - x^4 - x^5)). %t A337514 nmax = 34; A[_] = 0; Do[A[x_] = 1 - Sum[(x A[x])^k, {k, 1, 5}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] %t A337514 nmax = 35; CoefficientList[(1/x) InverseSeries[Series[x/(1 - x - x^2 - x^3 - x^4 - x^5), {x, 0, nmax}], x], x] %t A337514 b[m_, r_, k_] := b[m, r, k] = If[m + r == 0, 1, Sum[b[m - j, r + j - 1, k], {j, 1, Min[1, m]}] - Sum[b[m + j - 1, r - j, k], {j, 1, Min[k, r]}]]; a[n_] := b[0, n, 5]; Table[a[n], {n, 0, 34}] %Y A337514 Cf. A001591, A007440, A036767, A337512, A337513. %K A337514 sign %O A337514 0,6 %A A337514 _Ilya Gutkovskiy_, Aug 30 2020