A337518 Number of non-isomorphic graphs on n unlabeled nodes modulo 3.
1, 1, 2, 1, 2, 1, 0, 0, 1, 0, 2, 2, 0, 0, 1, 2, 0, 1, 0, 2, 1, 2, 0, 0, 2, 0, 0, 1, 1, 1, 0, 0, 2, 0, 1, 0, 2, 1, 0, 0, 2, 2, 0, 2, 0, 0, 2, 1, 2, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 1, 2, 0, 1, 2, 1, 1, 1, 1, 0, 0, 2, 1, 1, 2, 0, 2, 0, 0, 0, 2, 1, 2, 2, 1
Offset: 0
Keywords
Examples
For n = 4, there are 11 graphs on 4 nodes up to isomorphism, so a(4) = 2 = 11 mod 3.
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..98
- Steven C. Cater and Robert W. Robinson, Exponents of 2 in the numbers of unlabeled graphs and tournaments, Congressus Numerantium, 82 (1991), pp. 139-155.
Programs
-
Python
from itertools import combinations from math import prod, factorial, gcd from fractions import Fraction from sympy.utilities.iterables import partitions def A337518(n): return int(sum(Fraction(1<
>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items()))%3 for p in partitions(n))) % 3 # Chai Wah Wu, Jul 02 2024
Formula
a(n) = A000088(n) mod 3.
Comments