This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337520 #54 Feb 13 2023 02:55:06 %S A337520 1,1,2,4,10,22,64,147,409,1092,3253,8661,28585,83190,274001,912373, %T A337520 3366384,13253582,61533277,290493694 %N A337520 Number of set partitions of [4n] into 4-element subsets {i, i+k, i+2k, i+3k} with 1<=k<=n. %H A337520 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %e A337520 a(4) = 10: {{1,2,3,4}, {5,6,7,8}, {9,10,11,12}, {13,14,15,16}}, %e A337520 {{1,3,5,7}, {2,4,6,8}, {9,10,11,12}, {13,14,15,16}}, %e A337520 {{1,2,3,4}, {5,7,9,11}, {6,8,10,12}, {13,14,15,16}}, %e A337520 {{1,4,7,10}, {2,5,8,11}, {3,6,9,12}, {13,14,15,16}}, %e A337520 {{1,2,3,4}, {5,6,7,8}, {9,11,13,15}, {10,12,14,16}}, %e A337520 {{1,3,5,7}, {2,4,6,8}, {9,11,13,15}, {10,12,14,16}}, %e A337520 {{2,4,6,8}, {1,5,9,13}, {3,7,11,15}, {10,12,14,16}}, %e A337520 {{1,2,3,4}, {5,8,11,14}, {6,9,12,15}, {7,10,13,16}}, %e A337520 {{1,3,5,7}, {2,6,10,14}, {9,11,13,15}, {4,8,12,16}}, %e A337520 {{1,5,9,13}, {2,6,10,14}, {3,7,11,15}, {4,8,12,16}}. %p A337520 b:= proc(s, t) option remember; `if`(s={}, 1, (m-> add( %p A337520 `if`({seq(m-h*j, h=1..3)} minus s={}, b(s minus {seq(m-h*j, %p A337520 h=0..3)}, t), 0), j=1..min(t, iquo(m-1, 3))))(max(s))) %p A337520 end: %p A337520 a:= proc(n) option remember; forget(b): b({$1..4*n}, n) end: %p A337520 seq(a(n), n=0..12); %t A337520 b[s_, t_] := b[s, t] = If[s == {}, 1, Function[m, Sum[ If[Union@Table[m-h*j, {h, 1, 3}] ~Complement~ s == {}, b[s ~Complement~ Union@Table[m-h*j, {h, 0, 3}], t], 0], {j, 1, Min[t, Quotient[m-1, 3]]}]][Max[s]]]; %t A337520 a[n_] := a[n] = b[Range[4n], n]; %t A337520 Table[Print[n, " ", a[n]]; a[n], {n, 0, 12}] (* _Jean-François Alcover_, Feb 13 2023, after _Alois P. Heinz_ *) %Y A337520 Cf. A000566, A014307, A104430, A334250. %Y A337520 Main diagonal of A360333. %K A337520 nonn,more %O A337520 0,3 %A A337520 _Alois P. Heinz_, Nov 18 2020