This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337561 #13 Jan 19 2021 01:09:01 %S A337561 1,1,0,2,2,4,8,6,16,12,22,40,40,66,48,74,74,154,210,228,242,240,286, %T A337561 394,806,536,840,654,1146,1618,2036,2550,2212,2006,2662,4578,4170, %U A337561 7122,4842,6012,6214,11638,13560,16488,14738,15444,16528,25006,41002,32802 %N A337561 Number of pairwise coprime strict compositions of n, where a singleton is not considered coprime unless it is (1). %H A337561 Fausto A. C. Cariboni, <a href="/A337561/b337561.txt">Table of n, a(n) for n = 0..600</a> %F A337561 a(n) = A337562(n) - 1 for n > 1. %e A337561 The a(1) = 1 through a(9) = 12 compositions (empty column shown as dot): %e A337561 (1) . (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) %e A337561 (2,1) (3,1) (2,3) (5,1) (2,5) (3,5) (2,7) %e A337561 (3,2) (1,2,3) (3,4) (5,3) (4,5) %e A337561 (4,1) (1,3,2) (4,3) (7,1) (5,4) %e A337561 (2,1,3) (5,2) (1,2,5) (7,2) %e A337561 (2,3,1) (6,1) (1,3,4) (8,1) %e A337561 (3,1,2) (1,4,3) (1,3,5) %e A337561 (3,2,1) (1,5,2) (1,5,3) %e A337561 (2,1,5) (3,1,5) %e A337561 (2,5,1) (3,5,1) %e A337561 (3,1,4) (5,1,3) %e A337561 (3,4,1) (5,3,1) %e A337561 (4,1,3) %e A337561 (4,3,1) %e A337561 (5,1,2) %e A337561 (5,2,1) %t A337561 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],#=={}||UnsameQ@@#&&CoprimeQ@@#&]],{n,0,10}] %Y A337561 A072706 counts unimodal strict compositions. %Y A337561 A220377*6 counts these compositions of length 3. %Y A337561 A305713 is the unordered version. %Y A337561 A337462 is the not necessarily strict version. %Y A337561 A000740 counts relatively prime compositions, with strict case A332004. %Y A337561 A051424 counts pairwise coprime or singleton partitions. %Y A337561 A101268 considers all singletons to be coprime, with strict case A337562. %Y A337561 A178472 counts compositions with a common factor > 1. %Y A337561 A327516 counts pairwise coprime partitions, with strict case A305713. %Y A337561 A328673 counts pairwise non-coprime partitions. %Y A337561 A333228 ranks compositions whose distinct parts are pairwise coprime. %Y A337561 Cf. A007359, A007360, A087087, A216652, A220377, A302569, A307719, A326675, A333227, A337461. %K A337561 nonn %O A337561 0,4 %A A337561 _Gus Wiseman_, Sep 18 2020