This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337562 #11 Jan 19 2021 01:09:06 %S A337562 1,1,1,3,3,5,9,7,17,13,23,41,41,67,49,75,75,155,211,229,243,241,287, %T A337562 395,807,537,841,655,1147,1619,2037,2551,2213,2007,2663,4579,4171, %U A337562 7123,4843,6013,6215,11639,13561,16489,14739,15445,16529,25007,41003,32803 %N A337562 Number of pairwise coprime strict compositions of n, where a singleton is always considered coprime. %H A337562 Fausto A. C. Cariboni, <a href="/A337562/b337562.txt">Table of n, a(n) for n = 0..600</a> %F A337562 a(n > 1) = A337561(n) + 1 for n > 1. %e A337562 The a(1) = 1 through a(9) = 12 compositions: %e A337562 (1) (2) (3) (4) (5) (6) (7) (8) (9) %e A337562 (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) %e A337562 (2,1) (3,1) (2,3) (5,1) (2,5) (3,5) (2,7) %e A337562 (3,2) (1,2,3) (3,4) (5,3) (4,5) %e A337562 (4,1) (1,3,2) (4,3) (7,1) (5,4) %e A337562 (2,1,3) (5,2) (1,2,5) (7,2) %e A337562 (2,3,1) (6,1) (1,3,4) (8,1) %e A337562 (3,1,2) (1,4,3) (1,3,5) %e A337562 (3,2,1) (1,5,2) (1,5,3) %e A337562 (2,1,5) (3,1,5) %e A337562 (2,5,1) (3,5,1) %e A337562 (3,1,4) (5,1,3) %e A337562 (3,4,1) (5,3,1) %e A337562 (4,1,3) %e A337562 (4,3,1) %e A337562 (5,1,2) %e A337562 (5,2,1) %t A337562 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&(Length[#]<=1||CoprimeQ@@#)&]],{n,0,10}] %Y A337562 A007360 is the unordered version, with non-strict version A051424. %Y A337562 A101268 is the not necessarily strict version. %Y A337562 A220377*6 counts these compositions of length 3. %Y A337562 A337561 does not consider a singleton to be coprime unless it is (1), with non-strict version A337462. %Y A337562 A337664 looks only at distinct parts. %Y A337562 A000740 counts relatively prime compositions, with strict case A332004. %Y A337562 A072706 counts unimodal strict compositions. %Y A337562 A178472 counts compositions with a common factor. %Y A337562 A327516 counts pairwise coprime partitions, with strict case A305713. %Y A337562 A328673 counts pairwise non-coprime partitions. %Y A337562 A333228 ranks compositions whose distinct parts are pairwise coprime. %Y A337562 Cf. A087087, A220377, A302569, A307719, A326675, A333227, A335235, A335238, A337461, A337665. %K A337562 nonn %O A337562 0,4 %A A337562 _Gus Wiseman_, Sep 20 2020