This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337563 #13 Jan 12 2021 05:53:02 %S A337563 0,0,0,0,0,0,0,0,0,0,1,0,2,0,2,1,4,0,7,1,7,3,9,2,15,3,13,5,17,4,29,5, %T A337563 20,8,28,8,42,8,31,14,42,10,59,12,45,21,52,14,77,17,68,26,69,19,101, %U A337563 26,84,34,86,25,138,28,95,43,111,36,161,35,118,52,151 %N A337563 Number of pairwise coprime unordered triples of positive integers > 1 summing to n. %C A337563 Such partitions are necessarily strict. %C A337563 The Heinz numbers of these partitions are the intersection of A005408 (no 1's), A014612 (triples), and A302696 (coprime). %H A337563 Fausto A. C. Cariboni, <a href="/A337563/b337563.txt">Table of n, a(n) for n = 0..10000</a> %e A337563 The a(10) = 1 through a(24) = 15 triples (empty columns indicated by dots, A..J = 10..19): %e A337563 532 . 543 . 743 753 754 . 765 B53 875 975 985 B75 987 %e A337563 732 752 853 873 974 B73 B65 D73 B76 %e A337563 952 954 A73 D53 B74 B85 %e A337563 B32 972 B54 B83 B94 %e A337563 B43 B72 B92 BA3 %e A337563 B52 D43 D54 C75 %e A337563 D32 D52 D72 D65 %e A337563 E53 D74 %e A337563 H32 D83 %e A337563 D92 %e A337563 F72 %e A337563 G53 %e A337563 H43 %e A337563 H52 %e A337563 J32 %t A337563 Table[Length[Select[IntegerPartitions[n,{3}],!MemberQ[#,1]&&CoprimeQ@@#&]],{n,0,30}] %Y A337563 A055684 is the version for pairs. %Y A337563 A220377 allows 1's, with non-strict version A307719. %Y A337563 A337485 counts these partitions of any length. %Y A337563 A337563*6 is the ordered version. %Y A337563 A001399(n - 3) = A069905(n) = A211540(n + 2) counts 3-part partitions. %Y A337563 A002865 counts partitions with no 1's, with strict case A025147. %Y A337563 A007359 counts pairwise coprime partitions with no 1's. %Y A337563 A078374 counts relatively prime strict partitions. %Y A337563 A200976 and A328673 count pairwise non-coprime partitions. %Y A337563 A302696 ranks pairwise coprime partitions. %Y A337563 A302698 counts relatively prime partitions with no 1's. %Y A337563 A305713 counts pairwise coprime strict partitions. %Y A337563 A327516 counts pairwise coprime partitions. %Y A337563 A337452 counts relatively prime strict partitions with no 1's. %Y A337563 Cf. A007304, A082024, A101268, A284825, A332004, A337451, A337461, A337462, A337561, A337599, A337601, A337605. %K A337563 nonn %O A337563 0,13 %A A337563 _Gus Wiseman_, Sep 21 2020