This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337564 #12 Dec 31 2020 17:01:01 %S A337564 1,1,6,80,1540,38808,1206744,44595408,1908389340,92780281880, %T A337564 5050066185736,304196411024688,20087958167374552,1442953024024996400, %U A337564 112007566256683719600,9342904053303870936480,833388624898522799682780,79159669418651567937733080 %N A337564 Number of sequences of length 2*n covering an initial interval of positive integers and splitting into n maximal runs. %C A337564 Sequences covering an initial interval of positive integers are counted by A000670 and ranked by A333217. %H A337564 Andrew Howroyd, <a href="/A337564/b337564.txt">Table of n, a(n) for n = 0..200</a> %F A337564 a(n) = A005649(n-1)*binomial(2*n-1,n-1) = A005649(n-1)*A001700(n-1) for n > 0. - _Andrew Howroyd_, Dec 31 2020 %e A337564 The a(0) = 1 through a(2) = 6 sequences: %e A337564 () (1,1) (1,1,1,2) %e A337564 (1,1,2,2) %e A337564 (1,2,2,2) %e A337564 (2,1,1,1) %e A337564 (2,2,1,1) %e A337564 (2,2,2,1) %e A337564 The a(3) = 80 sequences: %e A337564 212222 111121 122233 333112 211133 %e A337564 221222 111211 133222 333211 233111 %e A337564 222122 112111 222133 112233 331112 %e A337564 222212 121111 222331 113322 332111 %e A337564 122221 123333 331222 221133 111223 %e A337564 211222 133332 332221 223311 111322 %e A337564 221122 213333 122223 331122 221113 %e A337564 222112 233331 132222 332211 223111 %e A337564 112221 333312 222213 112223 311122 %e A337564 122211 333321 222231 113222 322111 %e A337564 211122 122333 312222 222113 111123 %e A337564 221112 133322 322221 222311 111132 %e A337564 111221 221333 112333 311222 211113 %e A337564 112211 223331 113332 322211 231111 %e A337564 122111 333122 211333 111233 311112 %e A337564 211112 333221 233311 111332 321111 %t A337564 allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; %t A337564 Table[Length[Select[Join@@Permutations/@allnorm[2*n],Length[Split[#]]==n&]],{n,0,3}] %o A337564 (PARI) \\ here b(n) is A005649. %o A337564 b(n) = {sum(k=0, n, stirling(n,k,2)*(k + 1)!)} %o A337564 a(n) = {if(n==0, 1, b(n-1)*binomial(2*n-1,n-1))} \\ _Andrew Howroyd_, Dec 31 2020 %Y A337564 A335461 has this as main diagonal n = 2*k. %Y A337564 A336108 is the version for compositions. %Y A337564 A337504 is the version for compositions and anti-runs. %Y A337564 A337505 is the version for anti-runs. %Y A337564 A000670 counts sequences covering an initial interval. %Y A337564 A005649 counts anti-runs covering an initial interval. %Y A337564 A124767 counts maximal runs in standard compositions. %Y A337564 A333769 gives run lengths in standard compositions. %Y A337564 A337504 counts compositions of 2*n with n maximal anti-runs. %Y A337564 A337565 gives anti-run lengths in standard compositions. %Y A337564 Cf. A001700, A003242, A052841, A060223, A106351, A106356, A269134, A325535, A333489, A333627, A333755, A335838. %K A337564 nonn %O A337564 0,3 %A A337564 _Gus Wiseman_, Sep 03 2020 %E A337564 Terms a(5) and beyond from _Andrew Howroyd_, Dec 31 2020