cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337568 Product of all the parts in the Goldbach partitions (p,q) of 2n such that p + q = 2n, p <= q, and p,q prime (or 1 if no Goldbach partition of 2n exists).

This page as a plain text file.
%I A337568 #22 Feb 16 2025 08:34:00
%S A337568 1,4,9,15,525,35,1617,2145,5005,4641,586245,1616615,1550913,21505,
%T A337568 7436429,21489,985982745,3038795305,78337,13844919,10393190665,
%U A337568 12838371,6896776665,7292509103495,12023917269,70691995,37198413949697,62483343,80309179885,98755025688454681,138969249
%N A337568 Product of all the parts in the Goldbach partitions (p,q) of 2n such that p + q = 2n, p <= q, and p,q prime (or 1 if no Goldbach partition of 2n exists).
%H A337568 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GoldbachPartition.html">Goldbach Partition</a>
%H A337568 Wikipedia, <a href="http://en.wikipedia.org/wiki/Goldbach%27s_conjecture">Goldbach's conjecture</a>
%H A337568 <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a>
%H A337568 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A337568 a(n) = Product_{i=1..n} (i*(2*n-i))^(c(i)*c(2*n-i)), where c is the prime characteristic (A010051).
%F A337568 a(n) = A362640(n) * A362641(n).
%e A337568 a(9) = 5005; 2*9 = 18 has Goldbach partitions (13,5) and (11,7). The product of all the parts is 13 * 5 * 11 * 7 = 5005.
%t A337568 Table[Product[(i*(2 n - i))^((PrimePi[i] - PrimePi[i - 1]) (PrimePi[2 n - i] - PrimePi[2 n - i - 1])), {i, n}], {n, 40}]
%Y A337568 Cf. A010051, A045917, A238711, A362640 (product of the larger primes q), A362641 (product of the smaller primes p).
%K A337568 nonn
%O A337568 1,2
%A A337568 _Wesley Ivan Hurt_, Sep 29 2020