This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337586 #12 Nov 23 2020 13:02:27 %S A337586 1,1,1,1,1,1,1,2,1,1,1,0,0,1,1,1,1,3,2,1,1,1,1,2,1,2,1,1,1,2,1,3,3,2, %T A337586 1,1,1,0,3,0,3,3,2,1,1,1,1,0,3,3,3,3,2,1,1,1,1,2,3,2,1,5,3,2,1,1,1,2, %U A337586 2,1,3,7,3,5,3,2,1,1,1,0,0,2,2,2,5,3,5,3,2,1,1,1,1,0,3,3,4,5,5,3,5,3 %N A337586 Triangle read by rows: T(n, k) is the number of integer multisets of size k (partitions of k) for which the number of partitions of n with matching multiplicity multiset is odd (n >= 1, 1 <= k <= n). %C A337586 The relevant partitions of n have exactly k parts. %C A337586 The number of multiplicity multisets of size k met by a positive even number of partitions of n is A337584(n, k) - T(n, k). %H A337586 Álvar Ibeas, <a href="/A337586/b337586.txt">First 72 rows, flattened</a> %H A337586 Álvar Ibeas, <a href="/A337586/a337586.txt">First 30 rows</a> %F A337586 T(n, k) == A008284(n, k) (mod 2). %F A337586 If k > (2*n+1)/3, T(n, k) = A337585(n - k). %e A337586 The 3 = A008284(6, 2) partitions of 6 into 2 parts show 2 = A337584(6, 2) different multiplicity multisets: (1, 1) is attained by two of those partitions ((5, 1) and (4, 2)) and the other (2) just by one, (3, 3). Then, T(6, 2) = 1. %e A337586 Triangle begins: %e A337586 k: 1 2 3 4 5 6 7 8 9 10 %e A337586 -------------------- %e A337586 n=1: 1 %e A337586 n=2: 1 1 %e A337586 n=3: 1 1 1 %e A337586 n=4: 1 2 1 1 %e A337586 n=5: 1 0 0 1 1 %e A337586 n=6: 1 1 3 2 1 1 %e A337586 n=7: 1 1 2 1 2 1 1 %e A337586 n=8: 1 2 1 3 3 2 1 1 %e A337586 n=9: 1 0 3 0 3 3 2 1 1 %e A337586 n=10: 1 1 0 3 3 3 3 2 1 1 %Y A337586 Cf. A008284, A337585 (row sums), A337584. %K A337586 nonn,tabl %O A337586 1,8 %A A337586 _Álvar Ibeas_, Sep 02 2020