cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337599 Number of unordered triples of positive integers summing to n, any two of which have a common divisor > 1.

This page as a plain text file.
%I A337599 #12 Jan 13 2021 14:28:44
%S A337599 0,0,0,0,0,0,1,0,1,1,2,0,4,0,4,3,5,0,9,0,9,5,10,0,16,2,14,7,17,0,27,1,
%T A337599 21,11,24,6,36,1,30,15,37,2,51,1,41,25,44,2,64,5,58,25,57,2,81,13,69,
%U A337599 31,70,3,108,5,80,43,85,17,123,5,97,46,120,6,144,6
%N A337599 Number of unordered triples of positive integers summing to n, any two of which have a common divisor > 1.
%C A337599 First differs from A082024 at a(31) = 1, A082024(31) = 0.
%C A337599 The first relatively prime triple is (15,10,6), counted under a(31).
%H A337599 Fausto A. C. Cariboni, <a href="/A337599/b337599.txt">Table of n, a(n) for n = 0..10000</a>
%e A337599 The a(6) = 1 through a(16) = 5 partitions are (empty columns indicated by dots, A..G = 10..16):
%e A337599   222  .  422  333  442  .  444  .  644  555  664  .  666  .  866
%e A337599                     622     633     662  663  844     864     884
%e A337599                             642     842  933  862     882     A55
%e A337599                             822     A22       A42     963     A64
%e A337599                                               C22     A44     A82
%e A337599                                                       A62     C44
%e A337599                                                       C33     C62
%e A337599                                                       C42     E42
%e A337599                                                       E22     G22
%t A337599 stabQ[u_,Q_]:=Array[#1==#2||!Q[u[[#1]],u[[#2]]]&,{Length[u],Length[u]},1,And];
%t A337599 Table[Length[Select[IntegerPartitions[n,{3}],stabQ[#,CoprimeQ]&]],{n,0,100}]
%Y A337599 A014612 intersected with A337694 ranks these partitions.
%Y A337599 A200976 and A328673 count these partitions of any length.
%Y A337599 A284825 is the case that is also relatively prime.
%Y A337599 A307719 is the pairwise coprime instead of non-coprime version.
%Y A337599 A335402 gives the positions of zeros.
%Y A337599 A337604 is the ordered version.
%Y A337599 A337605 is the strict case.
%Y A337599 A051424 counts pairwise coprime or singleton partitions.
%Y A337599 A101268 counts pairwise coprime or singleton compositions.
%Y A337599 A305713 counts strict pairwise coprime partitions.
%Y A337599 A327516 counts pairwise coprime partitions.
%Y A337599 A333227 ranks pairwise coprime compositions.
%Y A337599 A333228 ranks compositions whose distinct parts are pairwise coprime.
%Y A337599 Cf. A000212, A000217, A001840, A018783, A082024, A211540, A220377, A337461.
%K A337599 nonn
%O A337599 0,11
%A A337599 _Gus Wiseman_, Sep 20 2020