This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337599 #12 Jan 13 2021 14:28:44 %S A337599 0,0,0,0,0,0,1,0,1,1,2,0,4,0,4,3,5,0,9,0,9,5,10,0,16,2,14,7,17,0,27,1, %T A337599 21,11,24,6,36,1,30,15,37,2,51,1,41,25,44,2,64,5,58,25,57,2,81,13,69, %U A337599 31,70,3,108,5,80,43,85,17,123,5,97,46,120,6,144,6 %N A337599 Number of unordered triples of positive integers summing to n, any two of which have a common divisor > 1. %C A337599 First differs from A082024 at a(31) = 1, A082024(31) = 0. %C A337599 The first relatively prime triple is (15,10,6), counted under a(31). %H A337599 Fausto A. C. Cariboni, <a href="/A337599/b337599.txt">Table of n, a(n) for n = 0..10000</a> %e A337599 The a(6) = 1 through a(16) = 5 partitions are (empty columns indicated by dots, A..G = 10..16): %e A337599 222 . 422 333 442 . 444 . 644 555 664 . 666 . 866 %e A337599 622 633 662 663 844 864 884 %e A337599 642 842 933 862 882 A55 %e A337599 822 A22 A42 963 A64 %e A337599 C22 A44 A82 %e A337599 A62 C44 %e A337599 C33 C62 %e A337599 C42 E42 %e A337599 E22 G22 %t A337599 stabQ[u_,Q_]:=Array[#1==#2||!Q[u[[#1]],u[[#2]]]&,{Length[u],Length[u]},1,And]; %t A337599 Table[Length[Select[IntegerPartitions[n,{3}],stabQ[#,CoprimeQ]&]],{n,0,100}] %Y A337599 A014612 intersected with A337694 ranks these partitions. %Y A337599 A200976 and A328673 count these partitions of any length. %Y A337599 A284825 is the case that is also relatively prime. %Y A337599 A307719 is the pairwise coprime instead of non-coprime version. %Y A337599 A335402 gives the positions of zeros. %Y A337599 A337604 is the ordered version. %Y A337599 A337605 is the strict case. %Y A337599 A051424 counts pairwise coprime or singleton partitions. %Y A337599 A101268 counts pairwise coprime or singleton compositions. %Y A337599 A305713 counts strict pairwise coprime partitions. %Y A337599 A327516 counts pairwise coprime partitions. %Y A337599 A333227 ranks pairwise coprime compositions. %Y A337599 A333228 ranks compositions whose distinct parts are pairwise coprime. %Y A337599 Cf. A000212, A000217, A001840, A018783, A082024, A211540, A220377, A337461. %K A337599 nonn %O A337599 0,11 %A A337599 _Gus Wiseman_, Sep 20 2020