This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337600 #15 Jan 18 2021 02:41:26 %S A337600 0,0,0,1,1,2,3,3,4,5,5,6,9,7,10,8,11,11,18,12,19,13,19,17,30,16,28,20, %T A337600 31,23,47,23,42,26,45,27,60,31,57,35,61,37,85,38,75,43,74,47,108,45, %U A337600 98,52,96,56,136,54,115,64,117,67,175,65,139,76,144,75,195 %N A337600 Number of unordered triples of positive integers summing to n whose set of distinct parts is pairwise coprime, where a singleton is always considered coprime. %C A337600 First differs from A337601 at a(9) = 5, A337601(9) = 4. %H A337600 Fausto A. C. Cariboni, <a href="/A337600/b337600.txt">Table of n, a(n) for n = 0..10000</a> %F A337600 For n > 0, a(n) = A337601(n) + A079978(n). %e A337600 The a(3) = 1 through a(14) = 10 partitions (A = 10, B = 11, C = 12): %e A337600 111 211 221 222 322 332 333 433 443 444 544 554 %e A337600 311 321 331 431 441 532 533 543 553 743 %e A337600 411 511 521 522 541 551 552 661 752 %e A337600 611 531 721 722 651 733 761 %e A337600 711 811 731 732 751 833 %e A337600 911 741 922 851 %e A337600 831 B11 941 %e A337600 921 A31 %e A337600 A11 B21 %e A337600 C11 %t A337600 Table[Length[Select[IntegerPartitions[n,{3}],SameQ@@#||CoprimeQ@@Union[#]&]],{n,0,100}] %Y A337600 A220377 is the strict case. %Y A337600 A304712 counts these partitions of any length. %Y A337600 A307719 is the strict case except for any number of 1's. %Y A337600 A337601 does not consider a singleton to be coprime unless it is (1). %Y A337600 A337602 is the ordered version. %Y A337600 A337664 counts compositions of this type and any length. %Y A337600 A000217 counts 3-part compositions. %Y A337600 A000837 counts relatively prime partitions. %Y A337600 A001399/A069905/A211540 count 3-part partitions. %Y A337600 A023023 counts relatively prime 3-part partitions. %Y A337600 A051424 counts pairwise coprime or singleton partitions. %Y A337600 A101268 counts pairwise coprime or singleton compositions. %Y A337600 A304709 counts partitions whose distinct parts are pairwise coprime. %Y A337600 A305713 counts pairwise coprime strict partitions. %Y A337600 A327516 counts pairwise coprime partitions. %Y A337600 A333227 ranks pairwise coprime compositions. %Y A337600 A333228 ranks compositions whose distinct parts are pairwise coprime. %Y A337600 A337461 counts pairwise coprime length-3 compositions. %Y A337600 A337563 counts pairwise coprime length-3 partitions with no 1's. %Y A337600 Cf. A001840, A007359, A007360, A014612, A087087, A284825, A302569, A302696, A328673, A335235, A337603, A337695. %K A337600 nonn %O A337600 0,6 %A A337600 _Gus Wiseman_, Sep 20 2020