This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337601 #13 Jan 18 2021 02:41:33 %S A337601 0,0,0,1,1,2,2,3,4,4,5,6,8,7,10,7,11,11,17,12,19,12,19,17,29,16,28,19, %T A337601 31,23,46,23,42,25,45,27,59,31,57,34,61,37,84,38,75,42,74,47,107,45, %U A337601 98,51,96,56,135,54,115,63,117,67,174,65,139,75,144,75,194 %N A337601 Number of unordered triples of positive integers summing to n whose set of distinct parts is pairwise coprime, where a singleton is not considered coprime unless it is (1). %C A337601 First differs from A337600 at a(9) = 4, A337600(9) = 5. %H A337601 Fausto A. C. Cariboni, <a href="/A337601/b337601.txt">Table of n, a(n) for n = 0..10000</a> %F A337601 For n > 0, a(n) = A337600(n) - A079978(n). %e A337601 The a(3) = 1 through a(14) = 10 partitions (A = 10, B = 11, C = 12): %e A337601 111 211 221 321 322 332 441 433 443 543 544 554 %e A337601 311 411 331 431 522 532 533 552 553 743 %e A337601 511 521 531 541 551 651 661 752 %e A337601 611 711 721 722 732 733 761 %e A337601 811 731 741 751 833 %e A337601 911 831 922 851 %e A337601 921 B11 941 %e A337601 A11 A31 %e A337601 B21 %e A337601 C11 %t A337601 Table[Length[Select[IntegerPartitions[n,{3}],CoprimeQ@@Union[#]&]],{n,0,100}] %Y A337601 A014612 intersected with A304711 ranks these partitions. %Y A337601 A220377 is the strict case. %Y A337601 A304709 counts these partitions of any length. %Y A337601 A307719 is the strict case except for any number of 1's. %Y A337601 A337600 considers singletons to be coprime. %Y A337601 A337603 is the ordered version. %Y A337601 A000217 counts 3-part compositions. %Y A337601 A000837 counts relatively prime partitions. %Y A337601 A001399/A069905/A211540 count 3-part partitions. %Y A337601 A023023 counts relatively prime 3-part partitions. %Y A337601 A051424 counts pairwise coprime or singleton partitions. %Y A337601 A101268 counts pairwise coprime or singleton compositions. %Y A337601 A305713 counts pairwise coprime strict partitions. %Y A337601 A327516 counts pairwise coprime partitions. %Y A337601 A333227 ranks pairwise coprime compositions. %Y A337601 A333228 ranks compositions whose distinct parts are pairwise coprime. %Y A337601 A337461 counts pairwise coprime 3-part compositions. %Y A337601 Cf. A001840, A007359, A007360, A087087, A284825, A302696, A304712, A328673, A335238, A337602. %K A337601 nonn %O A337601 0,6 %A A337601 _Gus Wiseman_, Sep 20 2020