This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337602 #14 Jan 21 2021 04:23:30 %S A337602 0,0,0,1,3,6,10,9,18,16,24,21,43,24,51,31,54,42,94,45,102,55,99,69, %T A337602 163,66,150,88,168,96,265,93,228,121,246,126,337,132,315,169,342,162, %U A337602 487,165,420,217,411,213,619,207,558,259,540,258,784,264,654,325,660 %N A337602 Number of ordered triples of positive integers summing to n whose set of distinct parts is pairwise coprime, where a singleton is always considered coprime. %H A337602 Fausto A. C. Cariboni, <a href="/A337602/b337602.txt">Table of n, a(n) for n = 0..10000</a> %e A337602 The a(3) = 1 through a(8) = 18 triples: %e A337602 (1,1,1) (1,1,2) (1,1,3) (1,1,4) (1,1,5) (1,1,6) %e A337602 (1,2,1) (1,2,2) (1,2,3) (1,3,3) (1,2,5) %e A337602 (2,1,1) (1,3,1) (1,3,2) (1,5,1) (1,3,4) %e A337602 (2,1,2) (1,4,1) (2,2,3) (1,4,3) %e A337602 (2,2,1) (2,1,3) (2,3,2) (1,5,2) %e A337602 (3,1,1) (2,2,2) (3,1,3) (1,6,1) %e A337602 (2,3,1) (3,2,2) (2,1,5) %e A337602 (3,1,2) (3,3,1) (2,3,3) %e A337602 (3,2,1) (5,1,1) (2,5,1) %e A337602 (4,1,1) (3,1,4) %e A337602 (3,2,3) %e A337602 (3,3,2) %e A337602 (3,4,1) %e A337602 (4,1,3) %e A337602 (4,3,1) %e A337602 (5,1,2) %e A337602 (5,2,1) %e A337602 (6,1,1) %t A337602 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],SameQ@@#||CoprimeQ@@Union[#]&]],{n,0,100}] %Y A337602 The complement in A014311 of A337695 ranks these compositions. %Y A337602 A220377*6 is the strict case. %Y A337602 A337600 is the unordered version. %Y A337602 A337603 does not consider a singleton to be coprime unless it is (1). %Y A337602 A337664 counts these compositions of any length. %Y A337602 A000740 counts relatively prime compositions. %Y A337602 A337561 counts pairwise coprime strict compositions. %Y A337602 A000217 counts 3-part compositions. %Y A337602 A001399/A069905/A211540 count 3-part partitions. %Y A337602 A023023 counts relatively prime 3-part partitions. %Y A337602 A051424 counts pairwise coprime or singleton partitions. %Y A337602 A101268 counts pairwise coprime or singleton compositions. %Y A337602 A305713 counts pairwise coprime strict partitions. %Y A337602 A327516 counts pairwise coprime partitions. %Y A337602 A333227 ranks pairwise coprime compositions. %Y A337602 A333228 ranks compositions whose distinct parts are pairwise coprime. %Y A337602 A337461 counts pairwise coprime 3-part compositions. %Y A337602 Cf. A000212, A007359, A087087, A284825, A302696, A304709, A304712, A307719, A328673, A335235, A335238, A337483, A337562, A337601. %K A337602 nonn %O A337602 0,5 %A A337602 _Gus Wiseman_, Sep 20 2020