This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337603 #12 Jan 21 2021 04:23:39 %S A337603 0,0,0,1,3,6,9,9,18,15,24,21,42,24,51,30,54,42,93,45,102,54,99,69,162, %T A337603 66,150,87,168,96,264,93,228,120,246,126,336,132,315,168,342,162,486, %U A337603 165,420,216,411,213,618,207,558,258,540,258,783,264,654,324,660 %N A337603 Number of ordered triples of positive integers summing to n whose set of distinct parts is pairwise coprime, where a singleton is not considered coprime unless it is (1). %H A337603 Fausto A. C. Cariboni, <a href="/A337603/b337603.txt">Table of n, a(n) for n = 0..10000</a> %e A337603 The a(3) = 1 through a(8) = 18 triples: %e A337603 (1,1,1) (1,1,2) (1,1,3) (1,1,4) (1,1,5) (1,1,6) %e A337603 (1,2,1) (1,2,2) (1,2,3) (1,3,3) (1,2,5) %e A337603 (2,1,1) (1,3,1) (1,3,2) (1,5,1) (1,3,4) %e A337603 (2,1,2) (1,4,1) (2,2,3) (1,4,3) %e A337603 (2,2,1) (2,1,3) (2,3,2) (1,5,2) %e A337603 (3,1,1) (2,3,1) (3,1,3) (1,6,1) %e A337603 (3,1,2) (3,2,2) (2,1,5) %e A337603 (3,2,1) (3,3,1) (2,3,3) %e A337603 (4,1,1) (5,1,1) (2,5,1) %e A337603 (3,1,4) %e A337603 (3,2,3) %e A337603 (3,3,2) %e A337603 (3,4,1) %e A337603 (4,1,3) %e A337603 (4,3,1) %e A337603 (5,1,2) %e A337603 (5,2,1) %e A337603 (6,1,1) %t A337603 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],CoprimeQ@@Union[#]&]],{n,0,100}] %Y A337603 A014311 intersected with A333228 ranks these compositions. %Y A337603 A220377*6 is the strict case. %Y A337603 A337461 is the strict case except for any number of 1's. %Y A337603 A337601 is the unordered version. %Y A337603 A337602 considers all singletons to be coprime. %Y A337603 A337665 counts these compositions of any length, ranked by A333228 with complement A335238. %Y A337603 A000217(n - 2) counts 3-part compositions. %Y A337603 A001399(n - 3) = A069905(n) = A211540(n + 2) counts 3-part partitions. %Y A337603 A007318 and A097805 count compositions by length. %Y A337603 A051424 counts pairwise coprime or singleton partitions. %Y A337603 A101268 counts pairwise coprime or singleton compositions. %Y A337603 A304711 ranks partitions whose distinct parts are pairwise coprime. %Y A337603 A305713 counts strict pairwise coprime partitions. %Y A337603 A327516 counts pairwise coprime partitions, with strict case A305713. %Y A337603 A333227 ranks pairwise coprime compositions. %Y A337603 Cf. A000740, A001840, A007359, A087087, A178472, A284825, A302696, A307719, A335235, A337561, A337695. %K A337603 nonn %O A337603 0,5 %A A337603 _Gus Wiseman_, Sep 20 2020