This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337604 #12 Jan 19 2021 21:55:06 %S A337604 0,0,0,0,0,0,1,0,3,1,6,0,13,0,15,7,21,0,37,0,39,16,45,0,73,6,66,28,81, %T A337604 0,130,6,105,46,120,21,181,6,153,67,189,12,262,6,213,118,231,12,337, %U A337604 21,306,121,303,12,433,57,369,154,378,18,583,30,435,217,465 %N A337604 Number of ordered triples of positive integers summing to n, any two of which have a common divisor > 1. %C A337604 The first relatively prime triple (15,10,6) is counted under a(31). %H A337604 Fausto A. C. Cariboni, <a href="/A337604/b337604.txt">Table of n, a(n) for n = 0..10000</a> %e A337604 The a(6) = 1 through a(15) = 7 triples (empty columns indicated by dots, A = 10): %e A337604 222 . 224 333 226 . 228 . 22A 339 %e A337604 242 244 246 248 366 %e A337604 422 262 264 266 393 %e A337604 424 282 284 555 %e A337604 442 336 2A2 636 %e A337604 622 363 428 663 %e A337604 426 446 933 %e A337604 444 464 %e A337604 462 482 %e A337604 624 626 %e A337604 633 644 %e A337604 642 662 %e A337604 822 824 %e A337604 842 %e A337604 A22 %t A337604 stabQ[u_,Q_]:=Array[#1==#2||!Q[u[[#1]],u[[#2]]]&,{Length[u],Length[u]},1,And]; %t A337604 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],stabQ[#,CoprimeQ]&]],{n,0,100}] %Y A337604 A014311 intersected with A337666 ranks these compositions. %Y A337604 A337667 counts these compositions of any length. %Y A337604 A335402 lists the positions of zeros. %Y A337604 A337461 is the coprime instead of non-coprime version. %Y A337604 A337599 is the unordered version, with strict case A337605. %Y A337604 A337605*6 is the strict version. %Y A337604 A000741 counts relatively prime 3-part compositions. %Y A337604 A101268 counts pairwise coprime or singleton compositions. %Y A337604 A200976 and A328673 count pairwise non-relatively prime partitions. %Y A337604 A307719 counts pairwise coprime 3-part partitions. %Y A337604 A318717 counts pairwise non-coprime strict partitions. %Y A337604 A333227 ranks pairwise coprime compositions. %Y A337604 Cf. A000217, A001399, A014612, A051424, A082024, A178472, A220377, A284825, A305713, A327516, A333228, A337561. %K A337604 nonn %O A337604 0,9 %A A337604 _Gus Wiseman_, Sep 20 2020