cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337605 Number of unordered triples of distinct positive integers summing to n, any two of which have a common divisor > 1.

This page as a plain text file.
%I A337605 #11 Jan 13 2021 10:00:20
%S A337605 0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,2,0,4,0,4,1,5,0,9,0,8,3,10,0,17,1,14,
%T A337605 5,16,1,25,1,21,8,26,2,37,1,30,15,33,2,49,2,44,16,44,2,64,6,54,21,56,
%U A337605 3,87,5,65,30,70,9,101,5,80,34,98,6,121,6,96,52
%N A337605 Number of unordered triples of distinct positive integers summing to n, any two of which have a common divisor > 1.
%H A337605 Fausto A. C. Cariboni, <a href="/A337605/b337605.txt">Table of n, a(n) for n = 0..10000</a>
%e A337605 The a(n) triples for n = 12, 16, 18, 22, 27, 55:
%e A337605   (6,4,2)  (8,6,2)   (8,6,4)   (10,8,4)  (12,9,6)  (28,21,6)
%e A337605            (10,4,2)  (9,6,3)   (12,6,4)  (15,9,3)  (30,20,5)
%e A337605                      (10,6,2)  (12,8,2)  (18,6,3)  (35,15,5)
%e A337605                      (12,4,2)  (14,6,2)            (40,10,5)
%e A337605                                (16,4,2)            (25,20,10)
%e A337605                                                    (30,15,10)
%t A337605 stabQ[u_,Q_]:=Array[#1==#2||!Q[u[[#1]],u[[#2]]]&,{Length[u],Length[u]},1,And];
%t A337605 Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&&stabQ[#,CoprimeQ]&]],{n,0,100}]
%Y A337605 A014612 intersected with A318719 ranks these partitions.
%Y A337605 A220377 is the coprime instead of non-coprime version.
%Y A337605 A318717 counts these partitions of any length, ranked by A318719.
%Y A337605 A337599 is the non-strict version.
%Y A337605 A337604 is the ordered non-strict version.
%Y A337605 A337605*6 is the ordered version.
%Y A337605 A023023 counts relatively prime 3-part partitions
%Y A337605 A051424 counts pairwise coprime or singleton partitions.
%Y A337605 A200976 and A328673 count pairwise non-coprime partitions.
%Y A337605 A307719 counts pairwise coprime 3-part partitions.
%Y A337605 A327516 counts pairwise coprime partitions, with strict case A305713.
%Y A337605 Cf. A000217, A001399, A014612, A082024, A178472, A220377, A284825, A337461, A337561, A337667.
%K A337605 nonn
%O A337605 0,17
%A A337605 _Gus Wiseman_, Sep 20 2020