This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337615 #5 Sep 05 2020 12:32:10 %S A337615 1,0,0,1,0,1,2,0,0,2,9,0,6,0,9,44,0,20,20,0,44,265,0,135,80,135,0,265, %T A337615 1854,0,924,630,630,924,0,1854,14833,0,7420,4928,5670,4928,7420,0, %U A337615 14833,133496,0,66744,44520,49896,49896,44520,66744,0,133496 %N A337615 T(n, k) = binomial(n, k)*sf(n-k)*sf(k) where sf is the subfactorial (A000166). Triangle read by rows, for 0 <= k <= n. %e A337615 Triangle starts: %e A337615 [0] 1; %e A337615 [1] 0, 0; %e A337615 [2] 1, 0, 1; %e A337615 [3] 2, 0, 0, 2; %e A337615 [4] 9, 0, 6, 0, 9; %e A337615 [5] 44, 0, 20, 20, 0, 44; %e A337615 [6] 265, 0, 135, 80, 135, 0, 265; %e A337615 [7] 1854, 0, 924, 630, 630, 924, 0, 1854; %e A337615 [8] 14833, 0, 7420, 4928, 5670, 4928, 7420, 0, 14833; %e A337615 [9] 133496, 0, 66744, 44520, 49896, 49896, 44520, 66744, 0, 133496. %p A337615 sf := n -> add((-1)^(n-j)*pochhammer(n-j+1, j), j=0..n): %p A337615 T := (n, k) -> binomial(n,k)*sf(n-k)*sf(k): %p A337615 seq(seq(T(n, k), k=0..n), n=0..9); %Y A337615 Cf. A000166 (T(n,0) and T(n,n)), A087981 (row sums). %K A337615 nonn,tabl %O A337615 0,7 %A A337615 _Peter Luschny_, Sep 05 2020