A337633 Triangle read by rows: T(n,k) is the number of nonnegative integers m < n such that m^k + m == 0 (mod n), where 0 <= k < n.
1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 3, 2, 1, 2, 4, 2, 4, 2, 1, 1, 2, 1, 4, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 4, 6, 4, 2, 4, 6, 4, 2, 1, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 2, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 1, 1, 2, 3, 4, 1, 2, 7, 2
Offset: 1
Examples
Triangle begins: n\k| 0 1 2 3 4 5 6 7 8 9 ---+----------------------------- 1 | 1; 2 | 1, 2; 3 | 1, 1, 2; 4 | 1, 2, 2, 1; 5 | 1, 1, 2, 3, 2; 6 | 1, 2, 4, 2, 4, 2; 7 | 1, 1, 2, 1, 4, 1, 2; 8 | 1, 2, 2, 1, 2, 1, 2, 1; 9 | 1, 1, 2, 1, 4, 1, 2, 1, 2; 10 | 1, 2, 4, 6, 4, 2, 4, 6, 4, 2; ... T(10, 2) = 4 because 0^2 + 0 == 0 (mod 10), 4^2 + 4 == 0 (mod 10), 5^2 + 5 == 0 (mod 10), and 9^2 + 9 == 0 (mod 10).
Links
- Peter Kagey, Table of n, a(n) for n = 1..10011 (first 141 rows, flattened)
Programs
-
Haskell
a337633t n k = length $ filter (\m -> (m^k + m) `mod` n == 0) [0..n-1]
-
Magma
[[#[m: m in [0..n-1] | -m^k mod n eq m]: k in [0..n-1]]: n in [1..17]]; // Juri-Stepan Gerasimov, Oct 12 2020