cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A337641 One-quarter of the number of regions in the central square of an equal-armed cross with arms of length n (as in A331456).

Original entry on oeis.org

1, 14, 70, 231, 576, 1207, 2255, 3883, 6267, 9588, 14088, 20021, 27667, 37306, 49240, 63859, 81517, 102603, 127545, 156769, 190739, 229932, 274898, 326181, 384332, 449878, 523472, 605766, 697380, 799053, 911449, 1035371, 1171471, 1320566, 1483374, 1660873, 1853819, 2063133, 2289607, 2534326, 2798159
Offset: 0

Views

Author

Keywords

Comments

Without loss of generality, we may assume the central square has vertices (0,0), (1,0), (0,1), (1,1).
Suppose n >= 1. Then all nodes in the graph, whether or not in the central square, have rational coordinates with denominator at most 4*n^2 + 2*n + 1, which for n = 1, 2, 3, ... is 7, 21, 43, 73, 111, ... (cf. A054569).
This maximum is always attained, for example by the node at the intersection of the lines 2*n*x + y = n, joining (0,n) to (1, -n) and -x + (2*n+1)*y = n, joining (-n,0) to (n+1,1).
In the central square, the maximum number of sides in any region is (for n = 0, 1, 2, 3, ...) 3, 4, 6, 6, 6, 6, 6, 6, 6, 7, 7, 6, 6, 6, 6, 6, 7, 6, 7, 7, 6, 6, 6, 6, 6, 6, 6, 7, 7, 6, 6, 6, 6, 6, 6, 6, 7, 7, 6, 6, 6, ... We conjecture that 7 is the maximum. - Lars Blomberg, Sep 19 2020.
See A331456 for further illustrations.

Crossrefs

Showing 1-1 of 1 results.