This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337664 #12 Feb 07 2021 00:41:21 %S A337664 1,1,2,4,8,16,30,58,111,210,396,750,1420,2688,5079,9586,18092,34157, %T A337664 64516,121899,230373,435463,823379,1557421,2946938,5578111,10561990, %U A337664 20005129,37902514,71832373,136173273,258211603,489738627,929074448,1762899110,3345713034 %N A337664 Number of compositions of n whose set of distinct parts is pairwise coprime, where a singleton is always considered coprime. %H A337664 Fausto A. C. Cariboni, <a href="/A337664/b337664.txt">Table of n, a(n) for n = 0..220</a> %e A337664 The a(0) = 1 through a(5) = 16 compositions: %e A337664 () (1) (2) (3) (4) (5) %e A337664 (11) (12) (13) (14) %e A337664 (21) (22) (23) %e A337664 (111) (31) (32) %e A337664 (112) (41) %e A337664 (121) (113) %e A337664 (211) (122) %e A337664 (1111) (131) %e A337664 (212) %e A337664 (221) %e A337664 (311) %e A337664 (1112) %e A337664 (1121) %e A337664 (1211) %e A337664 (2111) %e A337664 (11111) %t A337664 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ@@#||CoprimeQ@@Union[#]&]],{n,0,15}] %Y A337664 A304712 is the unordered version. %Y A337664 A337562 is the strict case. %Y A337664 A337602 is the length-3 case. %Y A337664 A337665 does not consider a singleton to be coprime unless it is (1). %Y A337664 A337695 ranks the complement of these compositions. %Y A337664 A000740 counts relatively prime compositions. %Y A337664 A051424 counts pairwise coprime or singleton partitions. %Y A337664 A101268 counts pairwise coprime or singleton compositions. %Y A337664 A305713 counts pairwise coprime strict partitions. %Y A337664 A327516 counts pairwise coprime partitions. %Y A337664 A333227 ranks pairwise coprime compositions. %Y A337664 A333228 ranks compositions whose distinct parts are pairwise coprime. %Y A337664 A337461 counts pairwise coprime length-3 compositions. %Y A337664 A337561 counts pairwise coprime strict compositions. %Y A337664 Cf. A007359, A007360, A087087, A302569, A304709, A307719, A335235, A335238, A335239, A337562, A337603, A337667. %K A337664 nonn %O A337664 0,3 %A A337664 _Gus Wiseman_, Sep 21 2020