This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337666 #10 Oct 13 2020 14:33:04 %S A337666 0,2,4,8,10,16,32,34,36,40,42,64,128,130,136,138,160,162,168,170,256, %T A337666 260,288,292,512,514,520,522,528,544,546,552,554,640,642,648,650,672, %U A337666 674,680,682,1024,2048,2050,2052,2056,2058,2080,2082,2084,2088,2090,2176 %N A337666 Numbers k such that any two parts of the k-th composition in standard order (A066099) have a common divisor > 1. %C A337666 Differs from A291165 in having 1090535424, corresponding to the composition (6,10,15). %C A337666 This is a ranking sequence for pairwise non-coprime compositions. %C A337666 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %H A337666 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %e A337666 The sequence together with the corresponding compositions begins: %e A337666 0: () 138: (4,2,2) 546: (4,4,2) %e A337666 2: (2) 160: (2,6) 552: (4,2,4) %e A337666 4: (3) 162: (2,4,2) 554: (4,2,2,2) %e A337666 8: (4) 168: (2,2,4) 640: (2,8) %e A337666 10: (2,2) 170: (2,2,2,2) 642: (2,6,2) %e A337666 16: (5) 256: (9) 648: (2,4,4) %e A337666 32: (6) 260: (6,3) 650: (2,4,2,2) %e A337666 34: (4,2) 288: (3,6) 672: (2,2,6) %e A337666 36: (3,3) 292: (3,3,3) 674: (2,2,4,2) %e A337666 40: (2,4) 512: (10) 680: (2,2,2,4) %e A337666 42: (2,2,2) 514: (8,2) 682: (2,2,2,2,2) %e A337666 64: (7) 520: (6,4) 1024: (11) %e A337666 128: (8) 522: (6,2,2) 2048: (12) %e A337666 130: (6,2) 528: (5,5) 2050: (10,2) %e A337666 136: (4,4) 544: (4,6) 2052: (9,3) %t A337666 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A337666 stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2]; %t A337666 Select[Range[0,1000],stabQ[stc[#],CoprimeQ]&] %Y A337666 A337604 counts these compositions of length 3. %Y A337666 A337667 counts these compositions. %Y A337666 A337694 is the version for Heinz numbers of partitions. %Y A337666 A337696 is the strict case. %Y A337666 A051185 and A305843 (covering) count pairwise intersecting set-systems. %Y A337666 A101268 counts pairwise coprime or singleton compositions. %Y A337666 A200976 and A328673 count pairwise non-coprime partitions. %Y A337666 A318717 counts strict pairwise non-coprime partitions. %Y A337666 A327516 counts pairwise coprime partitions. %Y A337666 A335236 ranks compositions neither a singleton nor pairwise coprime. %Y A337666 A337462 counts pairwise coprime compositions. %Y A337666 All of the following pertain to compositions in standard order (A066099): %Y A337666 - A000120 is length. %Y A337666 - A070939 is sum. %Y A337666 - A124767 counts runs. %Y A337666 - A233564 ranks strict compositions. %Y A337666 - A272919 ranks constant compositions. %Y A337666 - A291166 appears to rank relatively prime compositions. %Y A337666 - A326674 is greatest common divisor. %Y A337666 - A333219 is Heinz number. %Y A337666 - A333227 ranks coprime (Mathematica definition) compositions. %Y A337666 - A333228 ranks compositions with distinct parts coprime. %Y A337666 - A335235 ranks singleton or coprime compositions. %Y A337666 Cf. A082024, A284825, A305713, A319752, A319786, A327039, A327040, A336737, A337599, A337605. %K A337666 nonn %O A337666 1,2 %A A337666 _Gus Wiseman_, Oct 05 2020