cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337671 Subsequence of A337670 in which there are at most five terms in the sum.

This page as a plain text file.
%I A337671 #19 Nov 29 2020 14:14:53
%S A337671 1422,1464,1554,2612,3127,4481,5644,16122,68521,77129,82583,1065585,
%T A337671 4227140,6164560
%N A337671 Subsequence of A337670 in which there are at most five terms in the sum.
%C A337671 Number m is in the sequence if there exists a set of unordered {base, exponent} pairs {{b_1, e_1}, ..., {b_k, e_k}}, k <= 5, representing non-commutative perfect powers b_i^e_i != e_i^b_i, b_i > 1, e_i > 1, whose sum equals m = Sum_{i=1..k} b_i^e_i = Sum_{i=1..k} e_i^b_i.
%C A337671 If it exists, what is the smallest term whose sum consists of exactly 2, 3 or 4 powers? Are there infinitely many terms whose sum consists of exactly 5 powers?
%C A337671 If it exists, a(15) > 10^20.
%H A337671 Math StackExchange, <a href="https://math.stackexchange.com/q/3795656/318073">Base-Exponent Invariants</a>, 2020.
%H A337671 Matej Veselovac, <a href="/A337671/a337671.txt">PYTHON program for A337671</a>
%H A337671 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PerfectPower.html">Perfect Power</a>.
%e A337671 a(1)  = 1422    = 2^5 + 2^7  + 5^3  + 5^4 + 2^9   = 5^2 + 7^2  + 3^5  + 4^5  + 9^2
%e A337671 a(2)  = 1464    = 2^5 + 2^6  + 2^7  + 4^5 + 6^3   = 5^2 + 6^2  + 7^2  + 5^4  + 3^6
%e A337671 a(3)  = 1554    = 2^3 + 2^7  + 8^2  + 5^4 + 3^6   = 3^2 + 7^2  + 2^8  + 4^5  + 6^3
%e A337671 a(4)  = 2612    = 2^5 + 2^6  + 5^3  + 7^3 + 2^11  = 5^2 + 6^2  + 3^5  + 3^7  + 11^2
%e A337671 a(5)  = 3127    = 2^3 + 2^9  + 6^3  + 7^3 + 2^11  = 3^2 + 9^2  + 3^6  + 3^7  + 11^2
%e A337671 a(6)  = 4481    = 2^6 + 7^2  + 2^10 + 2^11 + 6^4  = 6^2 + 2^7  + 10^2 + 11^2 + 4^6
%e A337671 a(7)  = 5644    = 4^5 + 9^2  + 10^2 + 7^3 + 4^6   = 5^4 + 2^9  + 2^10 + 3^7  + 6^4
%e A337671 a(8)  = 16122   = 2^3 + 4^3  + 2^8  + 5^6 + 13^2  = 3^2 + 3^4  + 8^2  + 6^5  + 2^13
%e A337671 a(9)  = 68521   = 2^8 + 4^5  + 4^6  + 3^10 + 8^4  = 8^2 + 5^4  + 6^4  + 10^3 + 4^8
%e A337671 a(10) = 77129   = 4^6 + 2^12 + 7^4  + 10^3 + 2^16 = 6^4 + 12^2 + 4^7  + 3^10 + 16^2
%e A337671 a(11) = 82583   = 2^5 + 4^3  + 12^2 + 7^5 + 2^16  = 5^2 + 3^4  + 2^12 + 5^7  + 16^2
%e A337671 a(12) = 1065585 = 2^9 + 2^12 + 7^4  + 10^4 + 2^20 = 9^2 + 12^2 + 4^7  + 4^10 + 20^2
%e A337671 a(13) = 4227140 = 5^6 + 13^2 + 7^4  + 11^4 + 2^22 = 6^5 + 2^13 + 4^7  + 4^11 + 22^2
%e A337671 a(14) = 6164560 = 5^7 + 2^18 + 9^5  + 21^2 + 7^8  = 7^5 + 18^2 + 5^9  + 2^21 + 8^7
%Y A337671 Cf. A337670, A005188 (perfect digital invariants), perfect powers: A001597, A072103.
%K A337671 nonn,hard,more
%O A337671 1,1
%A A337671 _Matej Veselovac_, Sep 28 2020