This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337672 #7 Sep 20 2020 01:30:36 %S A337672 0,9,150,153,165,195,2268,2282,2289,2364,2394,2406,2409,2454,2457, %T A337672 2469,2499,2618,2646,2649,2661,2702,2709,2723,2829,2835,3126,3129, %U A337672 3150,3157,3171,3213,3219,3339,3591,34680,34740,34764,34770,34785,35576,35700,35756 %N A337672 Numbers with binary expansion Sum_{k = 0..w} b_k * 2^k such that the polynomial Sum_{k = 0..w} (X+k)^2 * (-1)^b_k is constant. %C A337672 Leading 0's in binary expansions are ignored. %C A337672 Positive terms are digitally balanced (A031443). %C A337672 If m belongs to the sequence, then A056539(m) also belongs to the sequence. %C A337672 If m and n belong to the sequence, then their binary concatenation also belongs to the sequence (assuming the concatenation with 0 is neutral). %H A337672 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %e A337672 The first 16 integers, alongside their binary representations and associate polynomials, are: %e A337672 k bin(k) P(k) %e A337672 -- ------ -------------- %e A337672 0 0 0 %e A337672 1 1 -X^2 %e A337672 2 10 2*X+1 %e A337672 3 11 -2*X^2-2*X-1 %e A337672 4 100 X^2+6*X+5 %e A337672 5 101 -X^2-2*X-3 %e A337672 6 110 -X^2+2*X+3 %e A337672 7 111 -3*X^2-6*X-5 %e A337672 8 1000 2*X^2+12*X+14 %e A337672 9 1001 -4 %e A337672 10 1010 4*X+6 %e A337672 11 1011 -2*X^2-8*X-12 %e A337672 12 1100 8*X+12 %e A337672 13 1101 -2*X^2-4*X-6 %e A337672 14 1110 -2*X^2+4 %e A337672 15 1111 -4*X^2-12*X-14 %e A337672 We have constant polynomials for k = 0 and k = 9, so a(1) = 0 and a(2) = 9. %o A337672 (PARI) is(n) = { my (b=Vecrev(binary(n))); poldegree(p=sum(k=1, #b, ('X+k-1)^2 * (-1)^b[k]))<=0 } %Y A337672 Cf. A031443, A056539, A133468. %K A337672 nonn,base %O A337672 1,2 %A A337672 _Rémy Sigrist_, Sep 15 2020