cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337677 a(0) = 1; a(n) = -(n!)^4 * Sum_{k=0..n-1} a(k) / (k! * (n-k))^4.

This page as a plain text file.
%I A337677 #9 Sep 15 2020 21:28:34
%S A337677 1,-1,15,-1150,277760,-164021776,200693093392,-455136213439776,
%T A337677 1760342776470958080,-10907982472777142353920,
%U A337677 103006437933467240856354816,-1424284967682216438413265543168,27890228890526992620507064048877568,-752281114397558490715695708227012591616
%N A337677 a(0) = 1; a(n) = -(n!)^4 * Sum_{k=0..n-1} a(k) / (k! * (n-k))^4.
%F A337677 Sum_{n>=0} a(n) * x^n / (n!)^4 = 1 / (1 + polylog(4,x)).
%t A337677 a[0] = 1; a[n_] := a[n] = -(n!)^4 Sum[a[k]/(k! (n - k))^4, {k, 0, n - 1}]; Table[a[n], {n, 0, 13}]
%t A337677 nmax = 13; CoefficientList[Series[1/(1 + PolyLog[4, x]), {x, 0, nmax}], x] Range[0, nmax]!^4
%o A337677 (PARI) a(n)={n!^4*polcoef(1/(1 + polylog(4,x + O(x*x^n))), n)} \\ _Andrew Howroyd_, Sep 15 2020
%Y A337677 Cf. A006252, A074706, A212857, A336260, A337676, A337678.
%K A337677 sign
%O A337677 0,3
%A A337677 _Ilya Gutkovskiy_, Sep 15 2020