A337694 Numbers with no two relatively prime prime indices.
1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 117, 121, 125, 127, 129, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167, 169, 171, 173, 179, 181, 183, 185, 189, 191, 193, 197, 199
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 37: {12} 79: {22} 121: {5,5} 3: {2} 39: {2,6} 81: {2,2,2,2} 125: {3,3,3} 5: {3} 41: {13} 83: {23} 127: {31} 7: {4} 43: {14} 87: {2,10} 129: {2,14} 9: {2,2} 47: {15} 89: {24} 131: {32} 11: {5} 49: {4,4} 91: {4,6} 133: {4,8} 13: {6} 53: {16} 97: {25} 137: {33} 17: {7} 57: {2,8} 101: {26} 139: {34} 19: {8} 59: {17} 103: {27} 147: {2,4,4} 21: {2,4} 61: {18} 107: {28} 149: {35} 23: {9} 63: {2,2,4} 109: {29} 151: {36} 25: {3,3} 65: {3,6} 111: {2,12} 157: {37} 27: {2,2,2} 67: {19} 113: {30} 159: {2,16} 29: {10} 71: {20} 115: {3,9} 163: {38} 31: {11} 73: {21} 117: {2,2,6} 167: {39}
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
A318719 is the squarefree case.
A328867 looks at distinct prime indices.
A337666 is the version for standard compositions.
A101268 counts pairwise coprime or singleton compositions.
A318717 counts strict pairwise non-coprime partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A335236 ranks compositions neither a singleton nor pairwise coprime.
A337462 counts pairwise coprime compositions.
A337667 counts pairwise non-coprime compositions.
Programs
-
Maple
filter:= proc(n) local F,i,j,np; if n::even and n>2 then return false fi; F:= map(t -> numtheory:-pi(t[1]), ifactors(n)[2]); np:= nops(F); for i from 1 to np-1 do for j from i+1 to np do if igcd(F[i],F[j])=1 then return false fi od od; true end proc: select(filter, [$1..300]); # Robert Israel, Oct 06 2020
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; stabQ[u_,Q_]:=Array[#1==#2||!Q[u[[#1]],u[[#2]]]&,{Length[u],Length[u]},1,And]; Select[Range[100],stabQ[primeMS[#],CoprimeQ]&]
Comments