This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337695 #10 Oct 05 2020 01:01:53 %S A337695 34,40,69,70,81,88,98,104,130,138,139,141,142,160,162,163,168,177,184, %T A337695 197,198,209,216,226,232,260,261,262,274,276,277,278,279,282,283,285, %U A337695 286,288,290,296,321,324,325,326,327,328,337,344,352,354,355,360,369 %N A337695 Numbers k such that the distinct parts of the k-th composition in standard order (A066099) are not pairwise coprime, where a singleton is always considered coprime. %C A337695 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %H A337695 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %e A337695 The sequence together with the corresponding compositions begins: %e A337695 34: (4,2) 163: (2,4,1,1) 277: (4,2,2,1) %e A337695 40: (2,4) 168: (2,2,4) 278: (4,2,1,2) %e A337695 69: (4,2,1) 177: (2,1,4,1) 279: (4,2,1,1,1) %e A337695 70: (4,1,2) 184: (2,1,1,4) 282: (4,1,2,2) %e A337695 81: (2,4,1) 197: (1,4,2,1) 283: (4,1,2,1,1) %e A337695 88: (2,1,4) 198: (1,4,1,2) 285: (4,1,1,2,1) %e A337695 98: (1,4,2) 209: (1,2,4,1) 286: (4,1,1,1,2) %e A337695 104: (1,2,4) 216: (1,2,1,4) 288: (3,6) %e A337695 130: (6,2) 226: (1,1,4,2) 290: (3,4,2) %e A337695 138: (4,2,2) 232: (1,1,2,4) 296: (3,2,4) %e A337695 139: (4,2,1,1) 260: (6,3) 321: (2,6,1) %e A337695 141: (4,1,2,1) 261: (6,2,1) 324: (2,4,3) %e A337695 142: (4,1,1,2) 262: (6,1,2) 325: (2,4,2,1) %e A337695 160: (2,6) 274: (4,3,2) 326: (2,4,1,2) %e A337695 162: (2,4,2) 276: (4,2,3) 327: (2,4,1,1,1) %t A337695 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A337695 Select[Range[0,100],!(SameQ@@stc[#]||CoprimeQ@@Union[stc[#]])&] %Y A337695 A304712 counts the complement, with ordered version A337664. %Y A337695 A333228 ranks compositions whose distinct parts are pairwise coprime. %Y A337695 A335238 does not consider a singleton coprime unless it is (1). %Y A337695 A337600 counts 3-part partitions in the complement. %Y A337695 A000740 counts relatively prime compositions. %Y A337695 A051424 counts pairwise coprime or singleton partitions. %Y A337695 A101268 counts pairwise coprime or singleton compositions. %Y A337695 A327516 counts pairwise coprime partitions. %Y A337695 A333227 ranks pairwise coprime compositions. %Y A337695 A337461 counts pairwise coprime 3-part compositions. %Y A337695 A337561 counts pairwise coprime strict compositions. %Y A337695 A337665 counts compositions whose distinct parts are pairwise coprime. %Y A337695 A337666 ranks pairwise non-coprime compositions. %Y A337695 Cf. A007359, A007360, A087087, A302569, A302696, A304709, A305713, A335235, A337562, A337601, A337602, A337603. %K A337695 nonn %O A337695 1,1 %A A337695 _Gus Wiseman_, Sep 22 2020