This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337696 #16 Oct 13 2020 14:33:27 %S A337696 0,2,4,8,16,32,34,40,64,128,130,160,256,260,288,512,514,520,544,640, %T A337696 1024,2048,2050,2052,2056,2082,2088,2176,2178,2208,2304,2560,2568, %U A337696 2592,4096,8192,8194,8200,8224,8226,8232,8320,8704,8706,8832,10240,10248,10368 %N A337696 Numbers k such that the k-th composition in standard order (A066099) is strict and pairwise non-coprime, meaning the parts are distinct and any two of them have a common divisor > 1. %C A337696 Differs from A291165 in having 1090535424, corresponding to the composition (6,10,15). %C A337696 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %H A337696 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %F A337696 Intersection of A337666 and A233564. %e A337696 The sequence together with the corresponding compositions begins: %e A337696 0: () 512: (10) 2304: (3,9) %e A337696 2: (2) 514: (8,2) 2560: (2,10) %e A337696 4: (3) 520: (6,4) 2568: (2,6,4) %e A337696 8: (4) 544: (4,6) 2592: (2,4,6) %e A337696 16: (5) 640: (2,8) 4096: (13) %e A337696 32: (6) 1024: (11) 8192: (14) %e A337696 34: (4,2) 2048: (12) 8194: (12,2) %e A337696 40: (2,4) 2050: (10,2) 8200: (10,4) %e A337696 64: (7) 2052: (9,3) 8224: (8,6) %e A337696 128: (8) 2056: (8,4) 8226: (8,4,2) %e A337696 130: (6,2) 2082: (6,4,2) 8232: (8,2,4) %e A337696 160: (2,6) 2088: (6,2,4) 8320: (6,8) %e A337696 256: (9) 2176: (4,8) 8704: (4,10) %e A337696 260: (6,3) 2178: (4,6,2) 8706: (4,8,2) %e A337696 288: (3,6) 2208: (4,2,6) 8832: (4,2,8) %t A337696 stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A337696 stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2]; %t A337696 Select[Range[0,1000],UnsameQ@@stc[#]&&stabQ[stc[#],CoprimeQ]&] %Y A337696 A318719 gives the Heinz numbers of the unordered version, with non-strict version A337694. %Y A337696 A337667 counts the non-strict version. %Y A337696 A337983 counts these compositions, with unordered version A318717. %Y A337696 A051185 counts intersecting set-systems, with spanning case A305843. %Y A337696 A200976 and A328673 count the unordered non-strict version. %Y A337696 A337462 counts pairwise coprime compositions. %Y A337696 A318749 counts pairwise non-coprime factorizations, with strict case A319786. %Y A337696 All of the following pertain to compositions in standard order (A066099): %Y A337696 - A000120 is length. %Y A337696 - A070939 is sum. %Y A337696 - A124767 counts runs. %Y A337696 - A233564 ranks strict compositions. %Y A337696 - A272919 ranks constant compositions. %Y A337696 - A333219 is Heinz number. %Y A337696 - A333227 ranks pairwise coprime compositions, or A335235 if singletons are considered coprime. %Y A337696 - A333228 ranks compositions whose distinct parts are pairwise coprime. %Y A337696 - A335236 ranks compositions neither a singleton nor pairwise coprime. %Y A337696 - A337561 is the pairwise coprime instead of pairwise non-coprime version, or A337562 if singletons are considered coprime. %Y A337696 - A337666 ranks the non-strict version. %Y A337696 Cf. A082024, A101268, A302797, A305713, A319752, A327040, A327516, A336737, A337599, A337604, A337605. %K A337696 nonn %O A337696 1,2 %A A337696 _Gus Wiseman_, Oct 06 2020