This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337697 #11 Oct 13 2020 14:33:52 %S A337697 0,0,0,0,0,2,0,4,2,4,8,8,14,10,16,12,30,38,46,46,48,52,62,152,96,156, %T A337697 112,190,256,338,420,394,326,402,734,622,1150,802,946,898,1730,1946, %U A337697 2524,2200,2328,2308,3356,5816,4772,5350,4890,6282,6316,12092,8902 %N A337697 Number of pairwise coprime compositions of n with no 1's, where a singleton is not considered coprime. %C A337697 A composition of n is a finite sequence of positive integers summing to n. These compositions must be strict. %F A337697 For n > 1, the version where singletons are considered coprime is a(n) + 1. %e A337697 The a(5) = 2 through a(12) = 14 compositions (empty column indicated by dot): %e A337697 (2,3) . (2,5) (3,5) (2,7) (3,7) (2,9) (5,7) %e A337697 (3,2) (3,4) (5,3) (4,5) (7,3) (3,8) (7,5) %e A337697 (4,3) (5,4) (2,3,5) (4,7) (2,3,7) %e A337697 (5,2) (7,2) (2,5,3) (5,6) (2,7,3) %e A337697 (3,2,5) (6,5) (3,2,7) %e A337697 (3,5,2) (7,4) (3,4,5) %e A337697 (5,2,3) (8,3) (3,5,4) %e A337697 (5,3,2) (9,2) (3,7,2) %e A337697 (4,3,5) %e A337697 (4,5,3) %e A337697 (5,3,4) %e A337697 (5,4,3) %e A337697 (7,2,3) %e A337697 (7,3,2) %t A337697 Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],!MemberQ[#,1]&&CoprimeQ@@#&]],{n,0,30}] %Y A337697 A022340 intersected with A333227 is a ranking sequence (using standard compositions A066099) for these compositions. %Y A337697 A212804 does not require coprimality, with unordered version A002865. %Y A337697 A337450 is the relatively prime instead of pairwise coprime version, with strict case A337451 and unordered version A302698. %Y A337697 A337462 allows 1's, with strict case A337561 (or A101268 with singletons), unordered version A327516 with Heinz numbers A302696, and 3-part case A337461. %Y A337697 A337485 is the unordered version (or A007359 with singletons considered coprime), with Heinz numbers A337984. %Y A337697 A337563 is the case of unordered triples. %Y A337697 Cf. A078374, A178472, A302568, A302697, A305713, A307719, A332004, A337562. %K A337697 nonn %O A337697 0,6 %A A337697 _Gus Wiseman_, Oct 06 2020