This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337698 #7 Oct 13 2020 14:34:35 %S A337698 0,0,1,2,6,13,28,59,122,248,502,1012,2033,4078,8170,16357,32736,65498, %T A337698 131026,262090,524224,1048500,2097063,4194200,8388486,16777074, %U A337698 33554267,67108672,134217506,268435200,536870616,1073741484,2147483258,4294966848,8589934080 %N A337698 Number of compositions of n that are not strictly increasing. %F A337698 a(n) = 2^(n-1) - A000009(n) for n > 0. %e A337698 The a(2) = 1 through a(5) = 13 compositions: %e A337698 (11) (21) (22) (32) %e A337698 (111) (31) (41) %e A337698 (112) (113) %e A337698 (121) (122) %e A337698 (211) (131) %e A337698 (1111) (212) %e A337698 (221) %e A337698 (311) %e A337698 (1112) %e A337698 (1121) %e A337698 (1211) %e A337698 (2111) %e A337698 (11111) %t A337698 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!Less@@#&]],{n,0,15}] %Y A337698 A000009 counts the complement. %Y A337698 A047967 is the unordered version. %Y A337698 A056823 is the weak version. %Y A337698 A140106 counts the unordered case of length 3. %Y A337698 A242771 counts the case of length 3. %Y A337698 A333255 is the complement of a ranking sequence (using standard compositions A066099) for these compositions. %Y A337698 A337481 counts these compositions that are not strictly decreasing. %Y A337698 A337482 counts these compositions that are not weakly decreasing. %Y A337698 A001523 counts unimodal compositions, with complement A115981. %Y A337698 A007318 and A097805 count compositions by length. %Y A337698 A218004 counts strictly increasing or weakly decreasing compositions. %Y A337698 Cf. A000212, A128422, A332745, A332834, A332835, A337484. %K A337698 nonn %O A337698 0,4 %A A337698 _Gus Wiseman_, Oct 06 2020