This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337705 #15 Oct 24 2020 16:52:17 %S A337705 1,3,7,11,13,15,19,21,23,25,27,31,33,39,43,45,47,49,55,57,59,61,63,67, %T A337705 71,73,75,77,79,83,85,87,95,97,99,101,103,105,111,113,115,119,121,125, %U A337705 127,129,133,135,143,147,151,153,157,159,161,163 %N A337705 Possible sums of orders of elements of finite groups. %C A337705 The sum of the orders of all elements of a finite group G is denoted by psi(G). %C A337705 psi(A X B) = psi(A)*psi(B) for finite groups A and B of coprime orders. %C A337705 psi(G) <= 7/11 psi(C_n) < psi(C_n) for every noncyclic finite group G of order n. %C A337705 psi(G) < 1/(p - 1) psi(C_n) for every noncyclic finite group G of order n, where p the smallest prime divisor of n. %C A337705 Conjecture: If S is a simple group and G is a soluble group satisfying |S|=|G|, then psi(S) < psi(G). %H A337705 M. Farrokhi D. G., <a href="/A337705/b337705.txt">Table of n, a(n) for n = 1..1027</a> %H A337705 H. Amiri, S. M. Jafarian Amiri, and I. M. Isaacs, <a href="https://doi.org/10.1080/00927870802502530">Sums of element orders in finite groups</a>, Comm. Algebra 37(9) (2009), 2978-2980. %H A337705 M. Herzog, P. Longobardi, and M. Maj, <a href="https://doi.org/10.1007/978-981-13-2047-7_4">Properties of finite and periodic groups determined by their element of orders (a survey)</a>, Group theory and computation, 59-90, Indian Stat. Inst. Ser., Springer, Singapore, 2018. %e A337705 psi(C_6) = 1 + 2 + 3 + 3 + 6 + 6 = 21. %o A337705 (GAP) Sum(List(G, Order)); %K A337705 nonn %O A337705 1,2 %A A337705 _M. Farrokhi D. G._, Sep 16 2020