A337711 Decimal expansion of (7/120)*Pi^4 = (21/4)*zeta(4).
5, 6, 8, 2, 1, 9, 6, 9, 7, 6, 9, 8, 3, 4, 7, 5, 5, 0, 5, 4, 5, 9, 0, 1, 9, 4, 0, 6, 8, 4, 1, 1, 3, 1, 4, 8, 9, 5, 6, 7, 4, 4, 2, 4, 9, 7, 5, 7, 3, 3, 1, 6, 2, 6, 5, 3, 3, 5, 6, 2, 5, 1, 3, 1, 0, 8, 1, 6, 3, 3, 2, 3, 4, 9, 8, 1, 5, 8
Offset: 1
Examples
5.68219697698347550545901940684113148956744249757331626533562...
References
- L. D. Landau and E. M. Lifschitz, Band V, Statistische Physik, Akademie Verlag, 1966, eq. (1) for x=4, p. 172.
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Index entries for transcendental numbers
Programs
-
Mathematica
RealDigits[7*Pi^4/120, 10, 100][[1]] (* Amiram Eldar, May 27 2021 *)
Formula
Equals -Integral_{x=0..1} log(x)^3/(x+1) dx. - Amiram Eldar, May 27 2021
Comments