cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337711 Decimal expansion of (7/120)*Pi^4 = (21/4)*zeta(4).

Original entry on oeis.org

5, 6, 8, 2, 1, 9, 6, 9, 7, 6, 9, 8, 3, 4, 7, 5, 5, 0, 5, 4, 5, 9, 0, 1, 9, 4, 0, 6, 8, 4, 1, 1, 3, 1, 4, 8, 9, 5, 6, 7, 4, 4, 2, 4, 9, 7, 5, 7, 3, 3, 1, 6, 2, 6, 5, 3, 3, 5, 6, 2, 5, 1, 3, 1, 0, 8, 1, 6, 3, 3, 2, 3, 4, 9, 8, 1, 5, 8
Offset: 1

Views

Author

Wolfdieter Lang, Sep 16 2020

Keywords

Comments

Equals Integral_{0..infinity} x^3/(exp(x) + 1) dx = (7/120)*Pi^4 = (21/4)*A013662. (Fermi-Dirac). See Abramowitz-Stegun, 23.2.8, for s=4, p. 807, and Landau-Lifschitz, eq. (1), for x=4, p. 172.

Examples

			5.68219697698347550545901940684113148956744249757331626533562...
		

References

  • L. D. Landau and E. M. Lifschitz, Band V, Statistische Physik, Akademie Verlag, 1966, eq. (1) for x=4, p. 172.

Crossrefs

Cf. A013662, A231535 (Planck, Bose-Einstein integral).

Programs

  • Mathematica
    RealDigits[7*Pi^4/120, 10, 100][[1]] (* Amiram Eldar, May 27 2021 *)

Formula

Equals -Integral_{x=0..1} log(x)^3/(x+1) dx. - Amiram Eldar, May 27 2021