cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337716 Number of graphs, where vertices are labeled with positive integers summing to n, and where identically labeled vertices are indistinguishable and cannot be connected with an edge.

This page as a plain text file.
%I A337716 #18 Apr 28 2021 19:09:27
%S A337716 1,1,2,4,8,16,35,77,179,440,1160,3264,9950,33206,121943,494011,
%T A337716 2235399,11391306,65287199,422908306,3130775625,26490210964,
%U A337716 255257056748,2825013955541,36147331371446,531237157370531,8965348473026888
%N A337716 Number of graphs, where vertices are labeled with positive integers summing to n, and where identically labeled vertices are indistinguishable and cannot be connected with an edge.
%H A337716 Andrew Howroyd, <a href="/A337716/b337716.txt">Table of n, a(n) for n = 0..50</a> (terms 0..30 from Max Alekseyev)
%o A337716 (PARI)
%o A337716 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
%o A337716 cross(u, v) = {sum(i=1, #u, sum(j=1, #v, gcd(u[i], v[j])))}
%o A337716 R(n,m,u)={if(n==0, 1, sum(k=if(m==1, n, 0), n\m, my(s=0); forpart(p=k, s+=self()(n-m*k, m-1, concat(u,Vec(p)))*2^cross(p,u)*permcount(p)); s/k!))}
%o A337716 a(n)={R(n,n,[])} \\ _Andrew Howroyd_, Sep 18 2020
%Y A337716 Cf. A337717.
%K A337716 nonn
%O A337716 0,3
%A A337716 _Max Alekseyev_ following a suggestion from _Franklin T. Adams-Watters_, Sep 16 2020