This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337718 #24 Jan 09 2023 09:09:01 %S A337718 0,2,4,6,8,10,12,14,16,18,20,22,23,24,26,28,29,30,32,34,35,38,40,41, %T A337718 42,44,45,46,47,50,54,55,56,58,60,62,65,66,67,68,70,74,75,78,80,81,85, %U A337718 86,88,89,90,92,94,95,98,100,101,102,103,104,105,106,107,108,109 %N A337718 Numbers that can be written as (m + product of digits of m) for some m. %C A337718 Every integer that contains a digit 0 is a term (A011540). %C A337718 When R_m with m >= 1 is in A002275, then R_m + 1 is a term (A047855 \ {1}). %C A337718 Near similar: %C A337718 -> Not-Colombian (A176995) are numbers that can be written as (m + sum of digits of m) for some m. %C A337718 -> Bogotá numbers (A336826) are numbers that can be written as (m * product of digits of m) for some m. %H A337718 Michael S. Branicky, <a href="/A337718/b337718.txt">Table of n, a(n) for n = 1..10000</a> %e A337718 10 = 5 + 5 = 10 + (1*0) and 22 = 16 + (1*6) are terms. %t A337718 m = 100; Select[Union[Table[n + Times @@ IntegerDigits[n], {n, 0, m}]], # <= m &] (* _Amiram Eldar_, Sep 16 2020 *) %o A337718 (PARI) isok(m) = {if (m==0, return (1)); for (k=1, m, if (k+vecprod(digits(k)) == m, return (1)););} \\ _Michel Marcus_, Sep 17 2020 %o A337718 (Python) %o A337718 from math import prod %o A337718 def b(n): return n + prod(map(int, str(n))) %o A337718 def aupto(n): return sorted(set(b(m) for m in range(n+1) if b(m) <= n)) %o A337718 print(aupto(109)) # _Michael S. Branicky_, Jan 09 2023 %Y A337718 Subsequences: A011540, A047855 \ {1}. %Y A337718 Range of A230099. %Y A337718 Cf. A176995 (not Colombian), A336826 (Bogotá numbers). %K A337718 nonn,base %O A337718 1,2 %A A337718 _Bernard Schott_, Sep 16 2020