cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337740 Weird numbers (A006037) with an even sum of divisors that are not Zumkeller numbers (A083207).

Original entry on oeis.org

73616, 682592, 2081824, 3963968, 4960448, 5440192, 6621632, 8000704, 8134208, 12979264, 31297472, 33736064, 43955584, 55691392, 58433152, 58904704, 160074368, 254533504, 263654656, 266828032, 267369728, 272240768, 352668416, 353383168, 357542656, 431462656, 530110208
Offset: 1

Views

Author

Amiram Eldar, Sep 17 2020

Keywords

Comments

Non-deficient numbers (A023196) with an even sum of divisors (A000203) that are neither pseudoperfect numbers (A005835) nor Zumkeller numbers (A083207).
Equivalently, numbers k such that sigma(k) >= 2*k and sigma(k) == 0 (mod 2), such that no subset of the aliquot divisors of k sums to k or to sigma(k)/2.

Examples

			73616 is a term since sigma(73616) = 147312 is even and larger than 2 * 73616 = 147232. No subset of the aliquot divisors of 73616 sums to 73616 or to sigma(73616)/2 = 73656.
		

Crossrefs

Intersection of A006037 and A171641.

Programs

  • Mathematica
    seqQ[n_] := Module[{d = Divisors[n], sum, c, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, c = CoefficientList[Product[1 + x^i, {i, d}], x]; c[[1 + 2*n]] == 0 && c[[1 + sum/2]] == 0]]; Select[Range[10^6], seqQ]