This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337744 #21 Aug 12 2022 19:19:57 %S A337744 0,1,2,4,7,8,16,32,39,42,64,128,175,256,291,292,512,537,1024,2048, %T A337744 2087,2090,2181,2184,2350,4096,8192,8267,16384,16437,16902,16912, %U A337744 32768,34983,34986,65536,131072,131342,131363,131364,133127,133130,133152,262144,524288 %N A337744 Numbers of the form Sum_{e in S} 2^(e-1) where S is a finite set of positive integers such that any element of S divides the sum of the elements of S. %C A337744 In other words, this sequence corresponds to the number m such that A271410(m) divides A029931(m). %C A337744 For any n > 0, A125297(n) gives the number of positive terms < 2^n. %C A337744 Every power of 2 belongs to the sequence. %H A337744 Rémy Sigrist, <a href="/A337744/b337744.txt">Table of n, a(n) for n = 1..316</a> %H A337744 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/questions/3779929/a-finite-set-of-distinct-positive-numbers-is-special-if-each-integer-in-the-set">A finite set of distinct positive numbers is special if each integer in the set divides the sum of all integers within the set.</a> %H A337744 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %e A337744 The first terms, alongside their binary representation and corresponding set S, are: %e A337744 n a(n) bin(a(n)) S %e A337744 -- ---- ---------- ------------------ %e A337744 1 0 0 {} %e A337744 2 1 1 {1} %e A337744 3 2 10 {2} %e A337744 4 4 100 {3} %e A337744 5 7 111 {1, 2, 3} %e A337744 6 8 1000 {4} %e A337744 7 16 10000 {5} %e A337744 8 32 100000 {6} %e A337744 9 39 100111 {1, 2, 3, 6} %e A337744 10 42 101010 {2, 4, 6} %e A337744 11 64 1000000 {7} %e A337744 12 128 10000000 {8} %e A337744 13 175 10101111 {1, 2, 3, 4, 6, 8} %e A337744 14 256 100000000 {9} %e A337744 15 291 100100011 {1, 2, 6, 9} %e A337744 16 292 100100100 {3, 6, 9} %o A337744 (PARI) is(n) = { my (b=Vecrev(binary(n)), s=select(k -> b[k], [1..#b])); vecsum(s) % lcm(s)==0 } %Y A337744 Cf. A029931, A125297, A271410. %K A337744 nonn,base %O A337744 1,3 %A A337744 _Rémy Sigrist_, Sep 26 2020