cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A337747 Maximal number of 4-point circles passing through n points on a plane.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 6, 12, 14, 22, 30, 45
Offset: 1

Views

Author

Dmitry Kamenetsky, Sep 17 2020

Keywords

Comments

This is a variant of the orchard-planting problem that uses circles instead of straight lines.
The maximal number of 3-point circles passing through n points on a plane is binomial(n,3). Given an arrangement of n points in general position, any choice of three points defines a circle. - Peter Kagey, Oct 05 2020
Paul Panzer provides upper and lower bounds:
a(n) <= floor(n*(n-1)*(n-2)/24).
a(n) >= 2 + n*((n-2)*(n-2) + 4)/32 for n == 0 (mod 4) and n >= 8.
a(n) >= 2 + (n-1)*((n-1)*(n-5) + 16)/32 for n == 1 (mod 4) and n >= 9.
a(n) >= 2 + n*(n-2)*(n-2)/32 for n == 2 (mod 4) and n >= 10.
a(n) >= 2 + (n-1)*((n-3)*(n-3) + 16)/32 for n == 3 (mod 4) and n >= 11.
It seems that a(n) = n*((n-2)*(n-2) + 4)/32 + 2*A008610(n/2-4) if n == 0 (mod 4) and n >= 8. - Zhao Hui Du, Dec 14 2022
The number of 4-point circles passing through n points (2*cos(t_k), sin(t_k)) where t_k = (2k-1)*Pi/n, k=1,2,...,n is A008610(n-4), so A337747(n) >= A008610(n-4), so A337747(n) ~ n^3/24 for sufficiently large n. - Zhao Hui Du, Dec 15 2022

Examples

			See examples in links.
		

Crossrefs

Cf. A003035 (the original orchard problem), A006065.

Extensions

a(11) from Zhao Hui Du, Nov 22 2022
a(12) from Zhao Hui Du, Dec 01 2022