This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337754 #23 Jul 31 2021 09:15:11 %S A337754 7,31,59,59,263,263,263,691,977,1091,1487,1487,2417,2797,4987,4987, %T A337754 6427,9811,9811,12739,12739,12739,17033,17033,17033,17033,17033,17033, %U A337754 67261,77969,77969,77969,77969,77969,140717,140717,140717,169019,169019,169019,180331 %N A337754 Least prime p such that 2p+1, 2p+3,..., 2p+2n+1 are not prime. %H A337754 Michael S. Branicky, <a href="/A337754/b337754.txt">Table of n, a(n) for n = 0..207</a> %e A337754 a(1) = 31 because 2*31+1=63 and 2*31+3=65 are not prime. %p A337754 nn:=10^8: %p A337754 for n from 1 to 50 do: %p A337754 ii:=0: %p A337754 for k from 2 to nn while(ii=0)do: %p A337754 p:=ithprime(k):jj:=0: %p A337754 for i from 1 by 2 to 2*n-1 do: %p A337754 if isprime(2*p+i) %p A337754 then %p A337754 jj:=1: %p A337754 else %p A337754 fi: %p A337754 od: %p A337754 if jj=0 %p A337754 then %p A337754 ii:=1: printf(`%d, `,p): %p A337754 else %p A337754 fi: %p A337754 od: %p A337754 od: %o A337754 (PARI) isok(p, n) = {forstep(k=1, 2*n+1, 2, if (isprime(2*p+k), return (0));); return(1);} %o A337754 a(n) = {my(p=2); while(!isok(p, n), p = nextprime(p+1)); p;} \\ _Michel Marcus_, Sep 21 2020 %o A337754 (Python) %o A337754 from sympy import isprime, nextprime %o A337754 def a(n, startp=2): %o A337754 p = startp %o A337754 while any(isprime(2*p+i) for i in range(1, 2*n+2, 2)): p = nextprime(p) %o A337754 return p %o A337754 print([a(n) for n in range(41)]) # _Michael S. Branicky_, Jul 31 2021 %o A337754 (Python) # uses above to produce initial segment faster %o A337754 def aupton(nn): %o A337754 an, alst = 2, [] %o A337754 for n in range(nn+1): an = a(n, startp=an); alst.append(an) %o A337754 return alst %o A337754 print(aupton(40)) # _Michael S. Branicky_, Jul 31 2021 %Y A337754 Cf. A230225. %K A337754 nonn %O A337754 0,1 %A A337754 _Michel Lagneau_, Sep 21 2020