This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337758 #22 Sep 06 2023 12:21:26 %S A337758 1,3,8,41,284,2594,29420,395845,6109724,105714438,2017696504, %T A337758 41979555034,943466064072,22739452659420,584304270694436, %U A337758 15928490898945133,458761105965272316,13910124960218668430,442657291681105692624,14744175994124292681518,512800784035081173166088 %N A337758 G.f. A(x) satisfies: [x^n] (1 + n*x + n*x^2 - A(x))^(n+1) = 0, for n > 0. %C A337758 Compare to: [x^n] (1 + n*x - C(x))^(n+1) = 0, for n>0, where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108). %C A337758 Compare to: [x^n] (1 + n*x - W(x))^n = 0, for n>0, where W(x) = Sum_{n>=1} (n-1)^(n-1)*x^n/n! = 1 + x/LambertW(-x). %H A337758 Paul D. Hanna, <a href="/A337758/b337758.txt">Table of n, a(n) for n = 1..300</a> %F A337758 a(n) is odd iff n is a power of 2 (conjecture). %F A337758 a(n) = 2 (mod 4) iff n is twice the sum of two distinct powers of 2 (conjecture). %e A337758 G.f.: A(x) = x + 3*x^2 + 8*x^3 + 41*x^4 + 284*x^5 + 2594*x^6 + 29420*x^7 + 395845*x^8 + 6109724*x^9 + 105714438*x^10 + 2017696504*x^11 + ... %e A337758 ILLUSTRATION OF DEFINITION. %e A337758 The table of coefficients of x^k in (1 + n*x + n*x^2 - A(x))^(n+1) begins: %e A337758 n=0: [1, -1, -3, -8, -41, -284, -2594, -29420, -395845, ...]; %e A337758 n=1: [1, 0, -4, -16, -78, -536, -4960, -57048, -775089, ...]; %e A337758 n=2: [1, 3, 0, -29, -171, -1071, -9124, -100590, -1334241, ...]; %e A337758 n=3: [1, 8, 24, 0, -340, -2504, -19032, -189408, -2368430, ...]; %e A337758 n=4: [1, 15, 95, 290, 0, -5327, -46335, -409770, -4606315, ...]; %e A337758 n=5: [1, 24, 252, 1472, 4614, 0, -103528, -1028952, -10296567, ...]; %e A337758 n=6: [1, 35, 546, 4949, 27972, 90244, 0, -2388773, -26537259, ...]; %e A337758 n=7: [1, 48, 1040, 13376, 112344, 627280, 2083504, 0, -63579020, ...]; %e A337758 n=8: [1, 63, 1809, 31260, 360765, 2901258, 16172964, 55276020, 0, ...]; ... %e A337758 in which the main diagonal is all zeros after the initial term, illustrating that [x^n] (1 + n*x + n*x^2 - A(x))^(n+1) = 0, for n > 0. %e A337758 ODD TERMS. %e A337758 The odd terms seem to occur only at positions equal to powers of 2: a(1), a(2), a(4), a(8), a(16), ...; the odd terms begin: [1, 3, 41, 395845, 15928490898945133, 490833755530209698774408313021523960879357, ...]. %e A337758 RELATED SERIES. %e A337758 B(x) = 1/(1 - A(x)) = 1 + x + 4*x^2 + 15*x^3 + 76*x^4 + 478*x^5 + 3868*x^6 + 39675*x^7 + 498120*x^8 + 7351430*x^9 + 123503516*x^10 + 2309531318*x^11 + ... %e A337758 where [x^n] (1 + n*(x + x^2)*B(x))^(n+1) / B(x)^(n+1) = 0 for n > 0. %e A337758 Series_Reversion(A(x)) = x - 3*x^2 + 10*x^3 - 56*x^4 + 268*x^5 - 2104*x^6 + 7636*x^7 - 129976*x^8 - 369988*x^9 - 19147364*x^10 - 279267684*x^11 - ... %o A337758 (PARI) {a(n) = my(A=[1],m=1); for(i=1,n, A=concat(A,0); %o A337758 m=#A; A[#A] = polcoeff( (1 + m*x + m*x^2 - x*Ser(A))^(m+1), m)/(m+1) );A[n]} %o A337758 for(n=1,30,print1(a(n),", ")) %Y A337758 Cf. A338328, A000108, A018900. %K A337758 nonn %O A337758 1,2 %A A337758 _Paul D. Hanna_, Oct 24 2020