This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A337760 #21 Sep 21 2020 04:58:08 %S A337760 0,1,0,1,0,-1,0,0,1,0,1,0,-1,1,0,0,0,0,0,-1,0,-1,0,1,0,1,0,1,0,1,0,0, %T A337760 0,0,0,-1,0,-1,0,1,0,1,0,1,0,0,0,-2,0,0,0,-1,0,0,0,0,0,1,0,1,0,-1,0,0, %U A337760 0,0,2,0,1,0,1,0,0,0,-1,0,-1,0,0,0,-1,0,0 %N A337760 Irregular triangle where T(n,k) are the coefficients of expansion 2^(n-1) Product_{k=1..n} sin(k*t) = Sum_{k=1..n*(n+1)/2} T(n,k)*cos(k*t) for even n and 2^(n-1) Product_{k=1..n} sin(k*t) = Sum_{k=1..n*(n+1)/2} T(n,k)*sin(k*t) for odd n. %C A337760 This coefficients appear in Euler totient function exact formula. %F A337760 T(1, 1) = 1, %F A337760 T(n, r) = 0 if r < 0 or r > n*(n+1)/2, %F A337760 T(n, 0) = T(n - 1, n) if n is even, %F A337760 T(n, 0) = 0 if n is odd, %F A337760 T(n, r) = T(n - 1, n - r) + (-1)^n*(T(n - 1, n + r) - T(n - 1, r - n)). %e A337760 sin(t) = sin(t), %e A337760 2*sin(t)*sin(2*t) = cos(t)-cos(3*t), %e A337760 4*sin(t)*sin(2*t)*sin(3*t) = sin(2*t)+sin(4*t)-sin(6*t), %e A337760 8*sin(t)*sin(2*t)*sin(3*t)*sin(4*t) = 1-cos(6*t)-cos(8*t)+cos(10*t), %e A337760 ... %e A337760 and corresponding table is: %e A337760 0, 1 %e A337760 0, 1, 0, -1 %e A337760 0, 0, 1, 0, 1, 0, -1 %e A337760 1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 1 %e A337760 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 1 %e A337760 0, 1, 0, 1, 0, 0, 0, -2, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, -1 %e A337760 ... %p A337760 an := proc (n, r) option remember; %p A337760 if n < 0 or r < 0 then %p A337760 0 %p A337760 elif n = 1 then %p A337760 if r = 1 then %p A337760 1 %p A337760 else %p A337760 0 %p A337760 end if; %p A337760 elif r=0 and n mod 2 = 0 then %p A337760 procname(n-1, n-r) %p A337760 else %p A337760 procname(n-1, n-r)+(-1)^n*(procname(n-1, n+r)-procname(n-1, r-n)) %p A337760 end if %p A337760 end proc %t A337760 Table[Expand[2^(n-1)*TrigReduce[Product[Sin[k*t],{k,1,n}]]],{n,1,10}] %K A337760 sign,tabf %O A337760 1,48 %A A337760 _Gevorg Hmayakyan_, Sep 18 2020