cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A335780 The number of hanging vertically stable self-avoiding walks of length n on a 2D square lattice where both the nodes and connecting rods have mass.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 7, 15, 37, 65, 115, 223, 503, 1127, 2761, 6225, 15393, 34915, 84399, 193489, 477727, 1113059, 2753799, 6486011, 16181965, 38447093, 95995579
Offset: 1

Views

Author

Scott R. Shannon, Sep 13 2020

Keywords

Comments

Consider a self-avoiding walk on a 2D square lattice where each visited node is given a fixed mass and each node is connected by a rod of another fixed mass. Hang the resulting lattice structure from a string at the first node. This sequence gives the number of walks of length n such that the structure will hang perfectly vertically, and will return to this position if perturbed.
For a walk to be stable requires the torque around the first node to be zero for both the node and rod masses, and that the overall center of mass of the structure is lower than the first node. As n increases the number of walks satisfying these conditions decreases rapidly. For example the total number of 2D self-avoiding walks on a square lattice in the lower two quadrants for n=27 is A116903(27) = 227399388019. The total number of hanging stable walks for n=27 is 95995579, indicating only one in about 2370 walks is stable.
For all stable walks it is found that the final node is always directly underneath the starting node. This is not the case if only the node or rod masses are considered.
See A337761 for the equalivalent sequence on a 3D cubic lattice.

Examples

			a(1)-a(5) = 1 as the only stable walk is a walk straight down from the first node.
a(6) = 3. There is one stable walk with a first step to the right:
.
      X-----+
            |
            |
+-----+-----+
|
|
+-----+
.
where 'X' represents the hanging point first node at (0,0).
Assuming a mass of p for the nodes, q for the rods, and a length l for the rods, the total torque from the nodes to the right of the first node is 2*p*l, which equals that from the nodes to the left. The total torque for the rods to the right of the first node is 2*q*(1/2)*l + 1*q*1*l = 2ql, which equals that from the rods to the left. The center of mass is at coordinate (0,-1). This walk can be taken in 2 ways thus, with the straight down walk, the total number of stable walks is 2+1 = 3.
a(20) = 193489. An example of a 20-step stable walk is:
.
            X---+
                |
    +---+       +---+---+
    |   |               |
    +   +---+---+       +
    |           |       |
+---+           +---+---+
|
+---+---+---+
.
The total torque from the nodes to the right of the first node is 4*p*1*l + 2*p*2*l + 3*p*3*l = 17pl. The torque from the left nodes is 3*p*1*l + 4*p*2*l + 2*p*3*l = 17pl. The total torque from the rods to the right of the first node is 2*q*(l/2)*l + 2*q*1*l + 2*q*(3/2)*l + 2*q*(5/2)*l + 2*q*3*l = 17ql. The torque from the rods on the left is 2*q*(l/2)*l + 1*q*1*l + 2*q*(3/2)*l + 2*q*2*l + 2*q*(5/2)*l + 1*q*3*l = 17ql. This shows the configuration does not have to be symmetrical to be balanced.
See the linked text file for the step directions for the stable walks for n=6 to n=15.
		

Crossrefs

A337317 The number of stable vertically balanced self-avoiding walks of length n on the upper half-plane of a 2D square lattice where the nodes and connecting rods have equal mass.

Original entry on oeis.org

2, 4, 10, 24, 60, 138, 348, 832, 2104, 5192, 13178, 32662, 82890, 207888, 529738, 1339188, 3424526, 8698382, 22294906, 56836056, 145982928, 373363770, 960834764, 2463930512, 6351046936, 16322104184, 42131167144, 108478565772, 280360764620
Offset: 1

Views

Author

Scott R. Shannon, Sep 28 2020

Keywords

Comments

This is a variation of A337860 where only walks which are stable against a small perturbation from either left or right are counted. This means any walks which have their center-of-mass directly above the extrema of the nodes touching the y=0 starting line are not counted, e.g. a walk directly up from the first node.
See A337860 for further details and examples of the walks in this sequence.

Examples

			a(1) = 2. The two stable walks are a single step left or right from the first node. The walk consisting of a single vertical step is not counted, as it has its center-of-mass directly above the single node touching the y=0 line and will thus topple with a slight perturbation from either the left or right directions.
a(3) = 10. The stable 3-step walks with a first step up or to the right are:
.
                                            +
+---+                         +  +---+      |
|   |  X---+---+---+          |      |      +
X   +                 X---+---+  X---+      |
                                        X---+
.
These walks can also be taken with a first or second step to the left, giving a total number of stable walks of 2*5 = 10.
The semi-stable 3-step walks which are not counted in this sequence, but are counted in A337860, are:
.
                        +
                        |
    +---+   +---+       +
    |           |       |
X---+           +---X   +
                        |
                        X
.
as a slight perturbation from the left, right, and left or right would topple the first, second and third structure respectively.
		

Crossrefs

Cf. A337860 (count semi-stable walks), A335780, A337761, A116903, A116904, A001411.

A337860 The number of vertically balanced self-avoiding walks of length n on the upper half-plane of a 2D square lattice where the nodes and connecting rods have equal mass.

Original entry on oeis.org

3, 5, 13, 27, 65, 145, 361, 855, 2163, 5303, 13419, 33195, 84159, 210765, 536871, 1356153, 3466533, 8799247, 22541583, 57428441, 147423495, 376838119, 969292869, 2484478265, 6401330591, 16445203213, 42434086359, 109225591309, 282209330237
Offset: 1

Views

Author

Scott R. Shannon, Sep 27 2020

Keywords

Comments

Consider a self-avoiding walk in the upper half-plane on a 2D square lattice where each visited node is given a fixed mass and each node is connected by a rod of the same mass. Let the resulting lattice structure be free to move in a downward gravitational field. This sequence gives the number of walks of length n such that the structure will remain in place and will not topple given no sideways perturbations.
For a walk to be stable requires the center-of-mass of the resulting structure to be above or inside the extrema of the horizontal positions of the nodes that are on the y=0 line where the walk begins. Here we assume no perturbations so allow walks which would topple if either a left or right perturbation acts, for example we allow a directly vertical walk above the starting node. For the number of walks where such semi-stable structures are not counted see A337317.
We also assume the nodes and the rods are of equal mass. This is required as some structures exist which are either stable or would topple depending on the relative mass of the nodes and rods. For example the 8-step walk:
.
+---+---+
|
+
|
+---+
|
X---+---+
.
Considering only the nodes the center-of-mass is at position 17/9 (~1.88) relative to the starting x=0 'X' position - this is between the x=0 and x=2 extrema of the nodes at y=0 and is thus stable. Considering only the rods the center-of-mass is at position 33/16 (~2.06) relative to 'X' - this is to the right of the node at x=2 and thus the structure would topple to the right. To avoid such issues we assume both rods and nodes are of equal mass. Given that, the center-of-mass of this walk is at 67/34 (~1.97) and is thus stable.
The number of stable walks in this sequence does not decrease as rapidly as compared to the number of hanging 2D stable walks of A335780. For example the total number of 2D self-avoiding walks on a square lattice in the upper half plane for n=29 is A116903(27) = 1577923781445. The total number of vertically stable walks here for n=29 is 282209330237, indicating about 1 in 6 walks are stable. This is expected as many otherwise unstable walks becomes stable if some node touches the y=0 line away from the starting node; this becomes relatively common as n increases. Any of the symmetrical walks in A335780 which have no nodes above the starting node will also be in this sequence, inverted from top to bottom.

Examples

			a(3) = 13. The stable 3-step walks with a first step upward or to the right are:
.
                                                              +
                                                          +   |
                        +      +---+   +---+   +---+      |   +
                        |      |           |   |   |      +   |
X---+---+---+   X---+---+  X---+       X---+   X   +      |   +
                                                      X---+   |
                                                              X
.
The first six walks can also be taken with a first or second step to the left, giving a total number of stable walks of 2*6 + 1 = 13. Note that the third walk would topple with a perturbation to the right, and the final walk would topple with a perturbation to either the left or right.
The three non-stable 3-step walks in the first quadrant are:
.
    +               +---+
    |               |
+---+   +---+---+   +
|       |           |
X       X           X
.
These can also be taken with a second step to the left, giving six unstable walks.
a(23) = 969292869. An example of a stable 23-step walk with a base of 1 unit is:
.
                        +---+
                        |   |
    +---+---+---+---+---+   +
    |                       |
+---+               +---+   +
|                   |   |   |
+---+---+---+   +---+   +---+
            |   |
            +   X
.
		

Crossrefs

Cf. A337317 (do not count semi-stable walks), A335780, A337761, A116903, A116904, A001411.

A335307 The number of hanging vertically stable self-avoiding walks of length n on a 2D square lattice where only the nodes have mass.

Original entry on oeis.org

1, 1, 1, 1, 5, 13, 31, 63, 141, 293, 665, 1553, 3795, 9225, 22257, 53623, 132277, 321651, 786553, 1928565, 4806503, 11885969, 29498995, 73362933, 184210629, 460165983, 1151961103
Offset: 1

Views

Author

Scott R. Shannon, Sep 12 2020

Keywords

Comments

This is a variation of A335780 where only the nodes have mass. See that sequence for further details of the allowed walks.

Examples

			a(1)-a(4) = 1 as the only stable walk is a walk straight down from the first node.
a(5) = 5. There are two stable walks with a first step to the right:
.
      X-----+
            |     +     X-----+
            |     |           |
+-----+-----+     |           |
|                 +-----+-----+
|
+
.
Assuming a node mass of p, both walks have a torque of 2p to the right and 2p to the left of the first node. These walks can be taken in 2 ways. Thus, with the straight down walk, the total number of stable walks is 2*2+1 = 5.
		

Crossrefs

Cf. A335780 (rods and nodes have mass), A335596 (only rods have mass), A116903, A337761, A001411, A001412.

A335596 The number of hanging vertically stable self-avoiding walks of length n on a 2D square lattice where only the connecting rods have mass.

Original entry on oeis.org

1, 1, 1, 1, 3, 7, 17, 43, 91, 183, 371, 799, 1941, 4621, 11463, 27823, 68997, 167481, 414045, 1006091, 2496981, 6127053, 15304071, 37838777, 95041475, 236320611, 595206771
Offset: 1

Views

Author

Scott R. Shannon, Sep 13 2020

Keywords

Comments

This is a variation of A335780 where only the rods between the nodes have mass. See that sequence for further details of the allowed walks.

Examples

			a(1)-a(4) = 1 as the only stable walk is a walk straight down from the first node.
a(5) = 3. There is one stable walk with a first step to the right:
.
            X-----+
                  |
                  |
+-----+-----+-----+
,
Assuming a rod mass of q, the total torque to the right of the first node is 2*q*(1/2) + 1*q*1 = 2q. The total torque to the left of the first node is 1*q*(1/2) + 1*q*(3/2) = 2q. This walk can be taken in 2 ways. Thus, with the straight down walk, the total number of stable walks is 2+1 = 3.
		

Crossrefs

Cf. A335780 (rods and nodes have mass), A335307 (only nodes have mass), A116903, A337761, A001411, A001412.

A335098 The number of constructible vertically balanced self-avoiding walks of length n on the upper half-plane of a 2D square lattice where the nodes and connecting rods have equal mass.

Original entry on oeis.org

3, 5, 11, 23, 51, 109, 251, 549, 1291, 2981, 7067, 16571, 39601, 94195, 226997, 544687, 1320935, 3194399, 7797891, 18996977, 46651387, 114353905, 282109663, 694793903, 1720327219, 4253521985, 10565387267, 26213565665, 65300013637, 162516950805, 405892537979
Offset: 1

Views

Author

Scott R. Shannon, Sep 12 2020

Keywords

Comments

This is a variation of A337860 where at every step, given the nodes and connecting rods have equal mass, the resulting 2D lattice structure is stable against toppling, assuming no sideways perturbations. See that sequence for further details of the allowed walks.

Examples

			a(1) = 3, a(2) = 5. These are the same stable walks as in A337860.
a(3) = 11. The constructible stable walks given a first step to the right are:
.
                                                   +
                        +      +---+   +---+       |
                        |      |           |       +
X---+---+---+   X---+---+  X---+       X---+       |
                                               X---+
.
These walks can also take a first step to the left thus, along with the directly vertical walk, the total number of stable walks is 2*5 + 1 = 11.
One 3-step walk which is not counted here, along with its parent 2-step walk, is:
.
+---+        +---+
|      ==>   |   |
X            X   +
.
After two steps the resulting structure is not stable against toppling, its center-of-mass is clearly to the right of the one node at y=0, thus any resulting 3-step walks resulting from this unstable 2-step walk are not counted.
		

Crossrefs

Showing 1-6 of 6 results.